/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/phi/kernels/funcs/matrix_bit_code.h" #include #include #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/kernels/funcs/blas/blas.h" namespace phi { namespace funcs { template struct MatrixBitCodeFunctorAdd { const phi::DenseTensor &vec_; phi::DenseTensor *tmat_; MatrixBitCodeFunctorAdd(const phi::DenseTensor &vec, phi::DenseTensor *tmat) : vec_(vec), tmat_(tmat) {} template void operator()(const CodeTable &code_table) { size_t batch_size = tmat_->dims()[0]; size_t width = tmat_->dims()[1]; auto *tmat_data = tmat_->data(); auto *vec_data = vec_.data(); for (size_t i = 0; i < batch_size; ++i) { auto code = code_table.get_code(i); int code_length = code.get_length(); for (int j = 0; j < code_length; ++j) { size_t index = code.calc_index(j); tmat_data[i * width + j] += vec_data[index]; } } } }; template void MatrixBitCodeFunctor::Add(const phi::DenseTensor &vec, phi::DenseTensor *tmat) { MatrixBitCodeFunctorAdd func(vec, tmat); paddle::visit(func, code_table_); } template struct MatrixBitCodeFunctorAddGrad { const phi::DenseTensor &tmat_; phi::DenseTensor *vec_; MatrixBitCodeFunctorAddGrad(const phi::DenseTensor &tmat, phi::DenseTensor *vec) : tmat_(tmat), vec_(vec) {} template void operator()(const CodeTable &table) { size_t batch_size = tmat_.dims()[0]; size_t width = tmat_.dims()[1]; auto *vec_data = vec_->data(); auto *tmat_data = tmat_.data(); for (size_t i = 0; i < batch_size; ++i) { auto code = table.get_code(i); int code_length = code.get_length(); for (int j = 0; j < code_length; ++j) { size_t index = code.calc_index(j); vec_data[index] += tmat_data[i * width + j]; } } } }; template void MatrixBitCodeFunctor::AddGrad(const phi::DenseTensor &tmat, phi::DenseTensor *vec) { MatrixBitCodeFunctorAddGrad func(tmat, vec); paddle::visit(func, code_table_); } template struct MatrixBitCodeFunctorSum { const phi::DenseTensor &tmat_; phi::DenseTensor *sum_; T scale_sum_; MatrixBitCodeFunctorSum(const phi::DenseTensor &tmat, phi::DenseTensor *sum, T scale_sum) : tmat_(tmat), sum_(sum), scale_sum_(scale_sum) {} template void operator()(const CodeTable &code_table) { size_t num_samples = tmat_.dims()[0]; size_t o_width = tmat_.dims()[1]; auto *tmat_data = tmat_.data(); auto *sum_data = sum_->data(); for (size_t i = 0; i < num_samples; ++i) { T sm = static_cast(0.0); auto code = code_table.get_code(i); int code_length = code.get_length(); for (int j = 0; j < code_length; ++j) { if (code.calc_bit(j)) { // calc_bit starts from right most bit, while data in tmat[i] is in // the // reverse order. sm += tmat_data[i * o_width + j]; } } sum_data[i] = scale_sum_ * sm; } } }; template void MatrixBitCodeFunctor::Sum(const phi::DenseTensor &tmat, phi::DenseTensor *sum, T scale_sum) { MatrixBitCodeFunctorSum func(tmat, sum, scale_sum); paddle::visit(func, code_table_); } template struct MatrixBitCodeFunctorMul { phi::DenseTensor *tmat_; const phi::DenseTensor &weight_; const phi::DenseTensor &input_; MatrixBitCodeFunctorMul(phi::DenseTensor *tmat, const phi::DenseTensor &weight, const phi::DenseTensor &input) : tmat_(tmat), weight_(weight), input_(input) {} template void operator()(const CodeTable &code_table) { auto blas = phi::funcs::GetBlas(phi::CPUContext()); size_t num_samples = tmat_->dims()[0]; size_t tmat_width = tmat_->dims()[1]; size_t input_width = input_.dims()[1]; size_t weight_width = weight_.dims()[1]; auto tmat_value = tmat_->data(); auto weight_value = weight_.data(); auto input_value = input_.data(); for (size_t i = 0; i < num_samples; ++i) { auto code = code_table.get_code(i); int code_length = code.get_length(); const T *input_row = input_value + input_width * i; for (int j = 0; j < code_length; ++j) { size_t index = code.calc_index(j); const T *weight_row = weight_value + weight_width * index; T sum = blas.DOT(input_width, weight_row, input_row); tmat_value[i * tmat_width + j] += sum; } } } }; template void MatrixBitCodeFunctor::Mul(phi::DenseTensor *tmat, const phi::DenseTensor &weight, const phi::DenseTensor &input) { MatrixBitCodeFunctorMul func(tmat, weight, input); paddle::visit(func, code_table_); } template class ReservedVector : public std::vector { public: ReservedVector() { this->reserve(N); } }; template struct MatrixBitCodeFunctorMulGradWeight { const phi::DenseTensor &tmat_; phi::DenseTensor *weight_; const phi::DenseTensor &input_; MatrixBitCodeFunctorMulGradWeight(const phi::DenseTensor &tmat, phi::DenseTensor *weight, const phi::DenseTensor &input) : tmat_(tmat), weight_(weight), input_(input) {} template void operator()(const CodeTable &code_table) { auto blas = phi::funcs::GetBlas(phi::CPUContext()); size_t num_samples = tmat_.dims()[0]; size_t input_width = input_.dims()[1]; size_t tmat_width = tmat_.dims()[1]; size_t weight_width = weight_->dims()[1]; auto tmat_value = tmat_.data(); auto weight_value = weight_->data(); auto input_value = input_.data(); std::map, 8u>> ops; for (size_t i = 0; i < num_samples; ++i) { auto code = code_table.get_code(i); int code_length = code.get_length(); const T *input_value_row = input_value + input_width * i; const T *tmat_row = tmat_value + i * tmat_width; for (int j = 0; j < code_length; ++j) { ops[code.calc_index(j)].emplace_back(tmat_row[j], input_value_row); } } for (auto &op : ops) { auto &op_in_row = op.second; for (auto &pair : op_in_row) { auto &scale = pair.first; auto *input_row = pair.second; T *weight_row = weight_value + op.first * weight_width; blas.AXPY(input_width, scale, input_row, weight_row); } } } }; template void MatrixBitCodeFunctor::MulGradWeight(const phi::DenseTensor &tmat, phi::DenseTensor *weight, const phi::DenseTensor &input) { MatrixBitCodeFunctorMulGradWeight func(tmat, weight, input); paddle::visit(func, code_table_); } template struct MatrixBitCodeFunctorMulGradWeightSR { const phi::DenseTensor &tmat_; phi::SelectedRows *weight_; const phi::DenseTensor &input_; MatrixBitCodeFunctorMulGradWeightSR(const phi::DenseTensor &tmat, phi::SelectedRows *weight, const phi::DenseTensor &input) : tmat_(tmat), weight_(weight), input_(input) {} template void operator()(const CodeTable &code_table) { auto blas = phi::funcs::GetBlas(phi::CPUContext()); size_t num_samples = tmat_.dims()[0]; size_t input_width = input_.dims()[1]; size_t tmat_width = tmat_.dims()[1]; size_t weight_width = weight_->value().dims()[1]; auto tmat_value = tmat_.data(); auto weight_value = weight_->mutable_value()->data(); auto input_value = input_.data(); std::unordered_map>> ops; ops.reserve(weight_->rows().size()); for (size_t i = 0; i < num_samples; ++i) { auto code = code_table.get_code(i); int code_length = code.get_length(); const T *input_value_row = input_value + input_width * i; const T *tmat_row = tmat_value + i * tmat_width; for (int j = 0; j < code_length; ++j) { ops[code.calc_index(j)].emplace_back(tmat_row[j], input_value_row); } } for (auto &row : weight_->rows()) { auto &op_in_row = ops[row]; for (auto &pair : op_in_row) { auto &scale = pair.first; auto *input_row = pair.second; blas.AXPY(input_width, scale, input_row, weight_value); } weight_value += weight_width; } } }; template void MatrixBitCodeFunctor::MulGradWeight(const phi::DenseTensor &tmat, phi::SelectedRows *weight, const phi::DenseTensor &input) { MatrixBitCodeFunctorMulGradWeightSR func(tmat, weight, input); paddle::visit(func, code_table_); } template struct MatrixBitCodeFunctorMulGradError { const phi::DenseTensor &tmat_; const phi::DenseTensor &weight_; phi::DenseTensor *input_; MatrixBitCodeFunctorMulGradError(const phi::DenseTensor &tmat, const phi::DenseTensor &weight, phi::DenseTensor *input) : tmat_(tmat), weight_(weight), input_(input) {} template void operator()(const CodeTable &code_table) { size_t num_samples = tmat_.dims()[0]; size_t tmat_width = tmat_.dims()[1]; size_t input_width = input_->dims()[1]; size_t weight_width = weight_.dims()[1]; auto tmat_value = tmat_.data(); auto weight_value = weight_.data(); auto input_value = input_->data(); for (size_t i = 0; i < num_samples; ++i) { auto code = code_table.get_code(i); int code_length = code.get_length(); for (int j = 0; j < code_length; ++j) { size_t index = code.calc_index(j); for (size_t k = 0; k < input_width; ++k) { input_value[input_width * i + k] += tmat_value[i * tmat_width + j] * weight_value[weight_width * index + k]; } } } } }; template void MatrixBitCodeFunctor::MulGradError(const phi::DenseTensor &tmat, const phi::DenseTensor &weight, phi::DenseTensor *input) { MatrixBitCodeFunctorMulGradError func(tmat, weight, input); paddle::visit(func, code_table_); } template struct MatrixBitCodeFunctorSub { phi::DenseTensor *tmat_; explicit MatrixBitCodeFunctorSub(phi::DenseTensor *tmat) : tmat_(tmat) {} template void operator()(const CodeTable &code_table) { size_t num_samples = tmat_->dims()[0]; size_t o_width = tmat_->dims()[1]; auto *tmat_data = tmat_->data(); for (size_t i = 0; i < num_samples; ++i) { auto code = code_table.get_code(i); int code_length = code.get_length(); for (int j = 0; j < code_length; ++j) { if (code.calc_bit(j)) { tmat_data[i * o_width + j] -= 1; } } } } }; template void MatrixBitCodeFunctor::Sub(phi::DenseTensor *tmat) { MatrixBitCodeFunctorSub func(tmat); paddle::visit(func, code_table_); } template class MatrixBitCodeFunctor; template class MatrixBitCodeFunctor; } // namespace funcs } // namespace phi