// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include "paddle/fluid/inference/analysis/analyzer.h" #include "paddle/fluid/inference/analysis/ut_helper.h" #include "paddle/fluid/inference/api/paddle_inference_api.h" #include "paddle/fluid/inference/api/paddle_inference_pass.h" #include "paddle/phi/backends/dynload/port.h" namespace paddle { namespace inference { namespace analysis { using namespace framework; // NOLINT TEST(Analyzer, analysis_without_tensorrt) { Argument argument; argument.SetDisableLogs(false); argument.SetModelDir(FLAGS_inference_model_dir); argument.SetEnableIrOptim(false); argument.SetUseGPU(false); argument.SetAnalysisPasses({"ir_graph_build_pass", "ir_analysis_pass", "ir_params_sync_among_devices_pass"}); Analyzer analyser; analyser.Run(&argument); } TEST(Analyzer, analysis_with_tensorrt) { Argument argument; argument.SetDisableLogs(false); argument.SetEnableIrOptim(false); argument.SetTensorRtMaxBatchSize(3); argument.SetTensorRtWorkspaceSize(1 << 20); argument.SetModelDir(FLAGS_inference_model_dir); argument.SetUseGPU(false); argument.SetAnalysisPasses({"ir_graph_build_pass", "ir_analysis_pass", "ir_params_sync_among_devices_pass"}); Analyzer analyser; analyser.Run(&argument); } void TestWord2vecPrediction(const std::string& model_path) { NativeConfig config; config.model_dir = model_path; config.use_gpu = false; config.device = 0; auto predictor = ::paddle::CreatePaddlePredictor(config); // One single batch int64_t data[4] = {1, 2, 3, 4}; PaddleTensor tensor; tensor.shape = std::vector({4, 1}); tensor.data = PaddleBuf(data, sizeof(data)); tensor.dtype = PaddleDType::INT64; // For simplicity, we set all the slots with the same data. std::vector slots(4, tensor); std::vector outputs; CHECK(predictor->Run(slots, &outputs)); PADDLE_ENFORCE_EQ(outputs.size(), 1UL, platform::errors::PreconditionNotMet( "Output size should be 1, but got %d", outputs.size())); // Check the output buffer size and result of each tid. PADDLE_ENFORCE_EQ(outputs.front().data.length(), 33168UL, platform::errors::PreconditionNotMet( "Output's data length should be 33168 but got %d", outputs.front().data.length())); float result[5] = { 0.00129761, 0.00151112, 0.000423564, 0.00108815, 0.000932706}; const size_t num_elements = outputs.front().data.length() / sizeof(float); // The outputs' buffers are in CPU memory. for (size_t i = 0; i < std::min(static_cast(5UL), num_elements); i++) { LOG(INFO) << "data: " << static_cast(outputs.front().data.data())[i] << " result: " << result[i]; EXPECT_NEAR( static_cast(outputs.front().data.data())[i], result[i], 1e-3); } } TEST(Analyzer, word2vec_without_analysis) { TestWord2vecPrediction(FLAGS_inference_model_dir); } } // namespace analysis } // namespace inference } // namespace paddle