# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np import math from op_test import OpTest import paddle.fluid.core as core def quantize_max_abs(x, max_range): scale = np.max(np.abs(x).flatten()) y = np.round(x / scale * max_range) return y, scale def dequantize_max_abs(x, scale, max_range): y = (scale / max_range) * x return y def channel_wise_quantize_max_abs(x, quant_bit=8, quant_axis=0): assert quant_axis in [0, 1], "The quant_axis should be 0 or 1." scales = [] y = x.copy() max_range = math.pow(2, quant_bit - 1) - 1 if quant_axis == 0: for i in range(x.shape[0]): scale = np.max(np.abs(x[i])).astype("float32") scales.append(scale) y[i] = np.round(x[i] * max_range / scale) elif quant_axis == 1: for i in range(x.shape[1]): scale = np.max(np.abs(x[:, i])).astype("float32") scales.append(scale) y[:, i] = np.round(x[:, i] * max_range / scale) return y, scales def channel_wise_dequantize_max_abs(x, scales, quant_bits, quant_axis, activation_scale=None): assert quant_axis in [0, 1], "The quant_axis should be 0 or 1." if isinstance(quant_bits, list): max_range = math.pow(2, quant_bits[0] - 1) - 1 else: max_range = math.pow(2, quant_bits - 1) - 1 y = x.copy() if quant_axis == 0: for i in range(x.shape[0]): y[i] = x[i] * scales[i] / max_range elif quant_axis == 1: for i in range(x.shape[1]): y[:, i] = x[:, i] * scales[i] / max_range if activation_scale is not None: y = y * activation_scale / (math.pow(2, quant_bits[1] - 1) - 1) return y class TestFakeChannelWiseDequantizeMaxAbsOpTwoScales(OpTest): def set_args(self): self.quant_bits = [8, 8] self.activation_scale = 0.7861 def set_dtype(self): self.dtype = np.float32 def setUp(self): self.set_args() self.set_dtype() self.op_type = "fake_channel_wise_dequantize_max_abs" x = np.random.randn(4, 3, 64, 64).astype(self.dtype) yq, scales = channel_wise_quantize_max_abs(x, self.quant_bits[0], 1) ydq = channel_wise_dequantize_max_abs(yq, scales, self.quant_bits, 1, self.activation_scale) self.inputs = { 'X': yq, 'Scales': [("scales0", np.array(scales).astype(self.dtype)), ("scales1", np.array([self.activation_scale]).astype(self.dtype))] } self.attrs = {'quant_bits': self.quant_bits} self.outputs = {'Out': ydq} def test_check_output(self): self.check_output() class TestFakeChannelWiseDequantizeMaxAbsOpTwoScalesFloat16( TestFakeChannelWiseDequantizeMaxAbsOpTwoScales): def set_dtype(self): self.dtype = np.float16 def test_check_output(self): self.check_output(atol=1e-2) class TestFakeChannelWiseDequantizeMaxAbsOpOneScale(OpTest): def set_args(self): self.quant_bits = [8] self.quant_axis = 0 def set_dtype(self): self.dtype = np.float32 def setUp(self): self.set_args() self.set_dtype() self.op_type = "fake_channel_wise_dequantize_max_abs" x = np.random.randn(4, 3, 64, 64).astype(self.dtype) yq, scales = channel_wise_quantize_max_abs(x, self.quant_bits[0], self.quant_axis) ydq = channel_wise_dequantize_max_abs(yq, scales, self.quant_bits, self.quant_axis) self.inputs = { 'X': yq, 'Scales': [("scales0", np.array(scales).astype(self.dtype))] } self.attrs = { 'quant_bits': self.quant_bits, 'quant_axis': self.quant_axis } self.outputs = {'Out': ydq} def test_check_output(self): self.check_output() class TestFakeChannelWiseDequantizeMaxAbsOpOneScale1( TestFakeChannelWiseDequantizeMaxAbsOpOneScale): def set_args(self): self.quant_bits = [8] self.quant_axis = 1 class TestFakeChannelWiseDequantizeMaxAbsOpOneScaleFloat16( TestFakeChannelWiseDequantizeMaxAbsOpOneScale): def set_dtype(self): self.dtype = np.float16 def test_check_output(self): self.check_output(atol=1e-2) class TestFakeChannelWiseDequantizeMaxAbsOpOneScale1Float16( TestFakeChannelWiseDequantizeMaxAbsOpOneScale1): def set_dtype(self): self.dtype = np.float16 def test_check_output(self): self.check_output(atol=1e-2) class TestFakeDequantizeMaxAbsOp(OpTest): def set_args(self): self.num_bits = 8 self.max_range = math.pow(2, self.num_bits - 1) - 1 def set_dtype(self): self.dtype = np.float32 def setUp(self): self.set_args() self.set_dtype() self.op_type = "fake_dequantize_max_abs" x = np.random.randn(31, 65).astype(self.dtype) yq, scale = quantize_max_abs(x, self.max_range) ydq = dequantize_max_abs(yq, scale, self.max_range) self.inputs = {'X': yq, 'Scale': np.array(scale).astype(self.dtype)} self.attrs = {'max_range': self.max_range} self.outputs = {'Out': ydq} def test_check_output(self): self.check_output() class TestFakeDequantizeMaxAbsOpDouble(TestFakeDequantizeMaxAbsOp): def set_dtype(self): self.dtype = np.float64 class TestFakeDequantizeMaxAbsOp5Bits(TestFakeDequantizeMaxAbsOp): def set_args(self): self.num_bits = 5 self.max_range = math.pow(2, self.num_bits - 1) - 1 class TestFakeDequantizeMaxAbsOpFloat16(TestFakeDequantizeMaxAbsOp): def set_dtype(self): self.dtype = np.float16 def test_check_output(self): self.check_output(atol=1e-2) class TestChannelWiseDequantizeOp(OpTest): def set_args(self): self.bit_length = 8 self.data_type = "float32" self.quant_axis = 0 def setUp(self): self.set_args() self.op_type = "dequantize_linear" x = np.random.randn(4, 3, 64, 64).astype(self.data_type) yq, scale = channel_wise_quantize_max_abs(x, self.bit_length, self.quant_axis) ydq = channel_wise_dequantize_max_abs(yq, scale, self.bit_length, self.quant_axis) scale = np.array(scale).astype(self.data_type) zero_point = np.zeros(scale.shape, dtype="int32") print('TestChannelWiseDequantizeOp:') self.inputs = {'X': yq, 'Scale': scale, 'ZeroPoint': zero_point} self.attrs = { 'bit_length': self.bit_length, 'quant_axis': self.quant_axis } self.outputs = {'Y': ydq} def test_check_output(self): self.check_output() class TestChannelWiseDequantizeOp1(TestChannelWiseDequantizeOp): def set_args(self): self.bit_length = 8 self.data_type = "float32" self.quant_axis = 1 class TestDequantizeOp(OpTest): def set_args(self): self.bit_length = 8 self.quant_axis = -1 self.max_range = math.pow(2, self.bit_length - 1) - 1 self.data_type = "float32" def setUp(self): self.set_args() self.op_type = "dequantize_linear" x = np.random.randn(31, 65).astype(self.data_type) yq, scale = quantize_max_abs(x, self.max_range) ydq = dequantize_max_abs(yq, scale, self.max_range) scale = np.array(scale).astype(self.data_type) zero_point = np.zeros(scale.shape, dtype="int32") self.inputs = {'X': yq, 'Scale': scale, 'ZeroPoint': zero_point} self.attrs = { 'bit_length': self.bit_length, 'quant_axis': self.quant_axis } self.outputs = {'Y': ydq} def test_check_output(self): self.check_output() class TestDequantizeOpDouble(TestDequantizeOp): def set_args(self): self.bit_length = 8 self.max_range = math.pow(2, self.bit_length - 1) - 1 self.data_type = "float64" self.quant_axis = -1 class TestDequantizeOp5Bits(TestDequantizeOp): def set_args(self): self.bit_length = 5 self.max_range = math.pow(2, self.bit_length - 1) - 1 self.data_type = "float32" self.quant_axis = -1 if __name__ == "__main__": unittest.main()