// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/p_norm_kernel.h" #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/common_shape.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/eigen/eigen_function.h" #include "paddle/phi/kernels/funcs/math_function.h" namespace phi { inline void GetDims(const phi::DDim& dim, int axis, int* pre, int* n, int* post, bool asvector) { *pre = 1; *post = 1; *n = dim[axis]; if (asvector) { *n = product(dim); } else { for (int i = 0; i < axis; ++i) { (*pre) *= dim[i]; } for (int i = axis + 1; i < dim.size(); ++i) { (*post) *= dim[i]; } } } template void PNormKernel(const Context& dev_ctx, const DenseTensor& x, float porder, int axis, float epsilon, bool keepdim, bool asvector, DenseTensor* out) { auto* in_x = &x; dev_ctx.template Alloc(out); auto xdim = in_x->dims(); if (axis < 0) axis = xdim.size() + axis; int pre, n, post; GetDims(xdim, axis, &pre, &n, &post, asvector); for (int i = 0; i < xdim.size(); i++) { PADDLE_ENFORCE_LT(0, xdim[i], errors::InvalidArgument( "The dims of Input(X) should be greater than 0.")); } auto* place = dev_ctx.eigen_device(); Eigen::DSizes shape(pre, n, post); Eigen::DSizes norm_shape(pre, post); auto x_e = phi::EigenVector::Flatten(*in_x); auto norm_e = phi::EigenVector::Flatten(*out); auto xr = x_e.reshape(shape); auto norm = norm_e.reshape(norm_shape); // p=0 means number of non-zero elements of (xr) // p=inf means the maximum of |xr| // p=-inf means the minimum of |xr| // otherwise, Lp-norm = pow(sum(pow(|xr|, p)), 1/p) Eigen::DSizes rdim(1); if (porder == 0) { norm.device(*place) = (xr != xr.constant(0)).template cast().sum(rdim); } else if (porder == INFINITY) { norm.device(*place) = xr.abs().maximum(rdim); } else if (porder == -INFINITY) { norm.device(*place) = xr.abs().minimum(rdim); } else { norm.device(*place) = xr.abs().pow(porder).sum(rdim).pow(1.0f / porder); } } } // namespace phi PD_REGISTER_KERNEL(p_norm, CPU, ALL_LAYOUT, phi::PNormKernel, float, double) {}