# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle.v2.fluid as fluid import paddle.v2.fluid.core as core import paddle.v2.fluid.layers as layers import paddle.v2.fluid.layers.detection as detection from paddle.v2.fluid.framework import Program, program_guard import unittest import numpy as np class TestBook(unittest.TestCase): def test_detection_output(self): program = Program() with program_guard(program): pb = layers.data( name='prior_box', shape=[10, 4], append_batch_size=False, dtype='float32') pbv = layers.data( name='prior_box_var', shape=[10, 4], append_batch_size=False, dtype='float32') loc = layers.data( name='target_box', shape=[20, 4], append_batch_size=False, dtype='float32') scores = layers.data( name='scores', shape=[2, 20, 10], append_batch_size=False, dtype='float32') out = layers.detection_output( scores=scores, loc=loc, prior_box=pb, prior_box_var=pbv) self.assertIsNotNone(out) print(str(program)) class TestPriorBox(unittest.TestCase): def test_prior_box(self): self.check_prior_box(use_cuda=False) self.check_prior_box(use_cuda=True) def prior_box_output(self, data_shape): images = fluid.layers.data( name='pixel', shape=data_shape, dtype='float32') conv1 = fluid.layers.conv2d( input=images, num_filters=3, filter_size=3, stride=2, use_cudnn=False) conv2 = fluid.layers.conv2d( input=conv1, num_filters=3, filter_size=3, stride=2, use_cudnn=False) conv3 = fluid.layers.conv2d( input=conv2, num_filters=3, filter_size=3, stride=2, use_cudnn=False) conv4 = fluid.layers.conv2d( input=conv3, num_filters=3, filter_size=3, stride=2, use_cudnn=False) conv5 = fluid.layers.conv2d( input=conv4, num_filters=3, filter_size=3, stride=2, use_cudnn=False) box, var = detection.prior_box( inputs=[conv1, conv2, conv3, conv4, conv5, conv5], image=images, min_ratio=20, max_ratio=90, # steps=[8, 16, 32, 64, 100, 300], aspect_ratios=[[2.], [2., 3.], [2., 3.], [2., 3.], [2.], [2.]], base_size=300, offset=0.5, flip=True, clip=True) return box, var def check_prior_box(self, use_cuda): if use_cuda: # prior_box only support CPU. return data_shape = [3, 224, 224] box, var = self.prior_box_output(data_shape) place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) batch = [4] # batch is not used in the prior_box. assert box.shape[1] == 4 assert var.shape[1] == 4 assert box.shape == var.shape assert len(box.shape) == 2 x = np.random.random(batch + data_shape).astype("float32") tensor_x = core.LoDTensor() tensor_x.set(x, place) boxes, vars = exe.run(fluid.default_main_program(), feed={'pixel': tensor_x}, fetch_list=[box, var]) assert vars.shape == var.shape assert boxes.shape == box.shape if __name__ == '__main__': unittest.main()