# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import paddle.fluid as fluid import paddle.v2 as paddle import paddle.v2.dataset.mnist as mnist import numpy def simple_fc_net(): reader = fluid.layers.open_recordio_file( filename='./mnist.recordio', shapes=[[-1, 784], [-1, 1]], lod_levels=[0, 0], dtypes=['float32', 'int64']) img, label = fluid.layers.read_file(reader) hidden = img for _ in xrange(4): hidden = fluid.layers.fc( hidden, size=200, act='tanh', bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=1.0))) prediction = fluid.layers.fc(hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) loss = fluid.layers.mean(loss) return loss def fc_with_batchnorm(): reader = fluid.layers.open_recordio_file( filename='./mnist.recordio', shapes=[[-1, 784], [-1, 1]], lod_levels=[0, 0], dtypes=['float32', 'int64']) img, label = fluid.layers.read_file(reader) hidden = img for _ in xrange(1): hidden = fluid.layers.fc( hidden, size=200, act='tanh', bias_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=1.0))) hidden = fluid.layers.batch_norm(input=hidden) prediction = fluid.layers.fc(hidden, size=10, act='softmax') loss = fluid.layers.cross_entropy(input=prediction, label=label) loss = fluid.layers.mean(loss) return loss class ParallelExecutor(unittest.TestCase): @classmethod def setUpClass(cls): # Convert mnist to recordio file with fluid.program_guard(fluid.Program(), fluid.Program()): reader = paddle.batch(mnist.train(), batch_size=32) feeder = fluid.DataFeeder( feed_list=[ # order is image and label fluid.layers.data( name='image', shape=[784]), fluid.layers.data( name='label', shape=[1], dtype='int64'), ], place=fluid.CPUPlace()) fluid.recordio_writer.convert_reader_to_recordio_file( './mnist.recordio', reader, feeder) def test_simple_fc(self): self.check_network_convergence(simple_fc_net) def test_batchnorm_fc(self): self.check_network_convergence(fc_with_batchnorm) def check_network_convergence(self, method): main = fluid.Program() startup = fluid.Program() with fluid.program_guard(main, startup): loss = method() adam = fluid.optimizer.Adam() adam.minimize(loss) exe = fluid.ParallelExecutor(loss_name=loss.name, use_cuda=True) first_loss, = exe.run([loss.name]) first_loss = numpy.array(first_loss) for i in xrange(10): exe.run([]) last_loss, = exe.run([loss.name]) last_loss = numpy.array(last_loss) print first_loss, last_loss self.assertGreater(first_loss[0], last_loss[0])