/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/fluid/operators/math/blas.h" #include "paddle/fluid/operators/math/complex_functors.h" #include "paddle/pten/core/dense_tensor.h" namespace pten { static void GetBroadcastFromDims(const int x_ndim, const std::int64_t* x_dims, const int y_ndim, const std::int64_t* y_dims, std::int64_t* x_bd_dims, std::int64_t* y_bd_dims, std::int64_t* out_bd_dims) { const int ndim = (std::max)(x_ndim, y_ndim); std::fill(x_bd_dims, x_bd_dims + ndim - x_ndim, 1); std::fill(y_bd_dims, y_bd_dims + ndim - y_ndim, 1); std::copy(x_dims, x_dims + x_ndim, x_bd_dims + ndim - x_ndim); std::copy(y_dims, y_dims + y_ndim, y_bd_dims + ndim - y_ndim); for (int i = 0; i < ndim; ++i) { PADDLE_ENFORCE_EQ( x_bd_dims[i] == y_bd_dims[i] || x_bd_dims[i] <= 1 || y_bd_dims[i] <= 1, true, paddle::platform::errors::InvalidArgument( "Input(X) and Input(Y) has error dim." "X_broadcast's shape[%s] must be equal to Y_broadcast's shape[%s]," "or X_broadcast's shape[%s] <= 1, or Y_broadcast's shape[%s] <= 1," "But received X_broadcast's shape[%s] = [%s]" "received Y_broadcast's shape[%s] = [%s]", i, i, i, i, i, x_bd_dims[i], i, y_bd_dims[i])); if (x_bd_dims[i] == 0 || y_bd_dims[i] == 0) { out_bd_dims[i] = 0; } else { out_bd_dims[i] = (std::max)(x_bd_dims[i], y_bd_dims[i]); } } } static int64_t GetIndexMessage(const int n, const int64_t* dims, const int64_t* index) { int64_t sum = 0; for (int i = 0; i < n; ++i) { if (dims[i] > 1) { sum = sum * dims[i] + index[i]; } } return sum; } static void IndexIncreaseFromDims(const int ndim, const int64_t* dims, int64_t* index) { for (int i = ndim - 1; i >= 0; --i) { ++index[i]; if (index[i] >= dims[i]) { index[i] -= dims[i]; } else { break; } } } template void MatMulFunction(const Context& context, const DenseTensor& X, const DenseTensor& Y, const std::vector& x_dims, const std::vector& y_dims, DenseTensor* Out, bool trans_x, bool trans_y, bool flag = false) { const int x_ndim = x_dims.size(); const int y_ndim = y_dims.size(); // Get data ptr const T* x_data = X.data(); const T* y_data = Y.data(); auto blas = paddle::operators::math::GetBlas(context); if (x_ndim == 1 && y_ndim == 1) { const int M = X.numel(); const int N = Y.numel(); PADDLE_ENFORCE_EQ( M, N, paddle::platform::errors::InvalidArgument( "X's numbers must be equal to Y's numbers," "when X/Y's dims =1. But received X has [%d] elements," "received Y has [%d] elements", M, N)); VLOG(3) << "MatMul's case 1"; blas.GEMM(CblasNoTrans, CblasTrans, 1, 1, M, static_cast(1), y_data, x_data, static_cast(flag), Out->mutable_data()); return; } if (x_ndim == 1) { const int N = X.numel(); if (trans_y) { PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1], N, paddle::platform::errors::InvalidArgument( "Input(Y) has error dim." "Y'dims[%d] must be equal to %d" "But received Y'dims[%d] is %d", y_ndim - 1, N, y_ndim - 1, y_dims[y_ndim - 1])); } else { PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2], N, paddle::platform::errors::InvalidArgument( "Input(Y) has error dim." "Y'dims[%d] must be equal to %d" "But received Y'dims[%d] is %d", y_ndim - 2, N, y_ndim - 2, y_dims[y_ndim - 2])); } std::vector out_dims(y_ndim - 1); if (trans_y) { std::copy_n(y_dims.cbegin(), y_ndim - 1, out_dims.begin()); } else { std::copy_n(y_dims.cbegin(), y_ndim - 2, out_dims.begin()); out_dims.back() = y_dims.back(); } Out->Resize(paddle::framework::make_ddim(out_dims)); Out->mutable_data(); if (trans_y) { const int M = Y.numel() / N; VLOG(3) << "MatMul's case 2"; blas.GEMV(false, M, N, static_cast(1), y_data, x_data, static_cast(flag), Out->mutable_data()); } else { const int M = y_dims[y_ndim - 1]; const int batch_size = Y.numel() / (M * N); if (batch_size == 1) { VLOG(3) << "MatMul's case 3"; blas.GEMV(true, N, M, static_cast(1), y_data, x_data, static_cast(flag), Out->mutable_data()); } else { VLOG(3) << "MatMul's case 4"; blas.BatchedGEMM(CblasTrans, CblasNoTrans, M, 1, N, static_cast(1), y_data, x_data, static_cast(flag), Out->mutable_data(), batch_size, M * N, 0); } } return; } if (y_ndim == 1) { const int N = Y.numel(); if (trans_x) { PADDLE_ENFORCE_EQ(x_dims[x_ndim - 2], N, paddle::platform::errors::InvalidArgument( "Input(X) has error dim." "X'dims[%d] must be equal to %d" "But received X'dims[%d] is %d", x_ndim - 2, N, x_ndim - 2, x_dims[x_ndim - 2])); } else { PADDLE_ENFORCE_EQ(x_dims[x_ndim - 1], N, paddle::platform::errors::InvalidArgument( "Input(X) has error dim." "X'dims[%d] must be equal to %d" "But received X'dims[%d] is %d", x_ndim - 1, N, x_ndim - 1, x_dims[x_ndim - 1])); } std::vector out_dims(x_ndim - 1); if (trans_x) { std::copy_n(x_dims.cbegin(), x_ndim - 2, out_dims.begin()); out_dims.back() = x_dims.back(); } else { std::copy_n(x_dims.cbegin(), x_ndim - 1, out_dims.begin()); } Out->Resize(paddle::framework::make_ddim(out_dims)); Out->mutable_data(); if (trans_x) { const int M = x_dims[x_ndim - 1]; const int batch_size = X.numel() / (M * N); if (batch_size == 1) { VLOG(3) << "MatMul's case 5"; blas.GEMV(true, N, M, static_cast(1), x_data, y_data, static_cast(flag), Out->mutable_data()); } else { VLOG(3) << "MatMul's case 6"; blas.BatchedGEMM(CblasTrans, CblasNoTrans, M, 1, N, static_cast(1), x_data, y_data, static_cast(flag), Out->mutable_data(), batch_size, M * N, 0); } } else { const int M = X.numel() / N; VLOG(3) << "MatMul's case 7"; blas.GEMV(false, M, N, static_cast(1), x_data, y_data, static_cast(flag), Out->mutable_data()); } return; } const int M = trans_x ? x_dims[x_ndim - 1] : x_dims[x_ndim - 2]; const int K = trans_x ? x_dims[x_ndim - 2] : x_dims[x_ndim - 1]; if (trans_y) { PADDLE_ENFORCE_EQ(y_dims[y_ndim - 1], K, paddle::platform::errors::InvalidArgument( "Input(Y) has error dim." "Y'dims[%d] must be equal to %d" "But received Y'dims[%d] is %d", y_ndim - 1, K, y_ndim - 1, y_dims[y_ndim - 1])); } else { PADDLE_ENFORCE_EQ(y_dims[y_ndim - 2], K, paddle::platform::errors::InvalidArgument( "Input(Y) has error dim." "Y'dims[%d] must be equal to %d" "But received Y'dims[%d] is %d", y_ndim - 2, K, y_ndim - 2, y_dims[y_ndim - 2])); } const int N = trans_y ? y_dims[y_ndim - 2] : y_dims[y_ndim - 1]; const int ndim = (std::max)(x_ndim, y_ndim); std::vector x_broadcast_dims(ndim); std::vector y_broadcast_dims(ndim); std::vector out_broadcast_dims(ndim); GetBroadcastFromDims(x_ndim - 2, x_dims.data(), y_ndim - 2, y_dims.data(), x_broadcast_dims.data(), y_broadcast_dims.data(), out_broadcast_dims.data()); out_broadcast_dims[ndim - 2] = M; out_broadcast_dims[ndim - 1] = N; Out->Resize(paddle::framework::make_ddim(out_broadcast_dims)); Out->mutable_data(); const int batch_dim = ndim - 2; // broadcast message const bool is_broadcast_dims = !std::equal(x_broadcast_dims.cbegin(), x_broadcast_dims.cbegin() + batch_dim, y_broadcast_dims.cbegin()); const std::int64_t x_batch_size = std::accumulate(x_broadcast_dims.cbegin(), x_broadcast_dims.cbegin() + batch_dim, 1LL, std::multiplies()); const std::int64_t y_batch_size = std::accumulate(y_broadcast_dims.cbegin(), y_broadcast_dims.cbegin() + batch_dim, 1LL, std::multiplies()); const std::int64_t out_batch_size = std::accumulate(out_broadcast_dims.cbegin(), out_broadcast_dims.cbegin() + batch_dim, 1LL, std::multiplies()); if (out_batch_size == 0) return; if (x_batch_size == 1 && y_batch_size == 1) { VLOG(3) << "MatMul's case 8"; blas.GEMM(trans_x ? CblasTrans : CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast(1), x_data, y_data, static_cast(flag), Out->mutable_data()); } else if (x_batch_size == 1) { if (M == 1 && trans_y) { VLOG(3) << "MatMul's case 9"; blas.GEMV(false, y_batch_size * N, K, static_cast(1), y_data, x_data, static_cast(flag), Out->mutable_data()); } else { VLOG(3) << "MatMul's case 10"; blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast(1), x_data, y_data, static_cast(flag), Out->mutable_data(), out_batch_size, 0, K * N); } } else if (y_batch_size == 1) { if (!trans_x) { VLOG(3) << "MatMul's case 11"; blas.GEMM(CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans, x_batch_size * M, N, K, static_cast(1), x_data, y_data, static_cast(flag), Out->mutable_data()); } else { VLOG(3) << "MatMul's case 12"; blas.BatchedGEMM(CblasTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast(1), x_data, y_data, static_cast(flag), Out->mutable_data(), out_batch_size, M * K, 0); } } else if (!is_broadcast_dims) { VLOG(3) << "MatMul's case 13"; blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast(1), x_data, y_data, static_cast(flag), Out->mutable_data(), out_batch_size, M * K, K * N); } else { // in the case, can't use stridedgemm std::vector x_ptr(out_batch_size); std::vector y_ptr(out_batch_size); std::vector out_ptr(out_batch_size); std::vector index(batch_dim, 0); for (std::int64_t i = 0; i < out_batch_size; ++i) { // using the index to get offset const std::int64_t x_index = GetIndexMessage(batch_dim, x_broadcast_dims.data(), index.data()); const std::int64_t y_index = GetIndexMessage(batch_dim, y_broadcast_dims.data(), index.data()); x_ptr[i] = x_data + x_index * M * K; y_ptr[i] = y_data + y_index * K * N; out_ptr[i] = Out->mutable_data() + i * M * N; IndexIncreaseFromDims(batch_dim, out_broadcast_dims.data(), index.data()); } VLOG(3) << "MatMul's case 14"; blas.BatchedGEMM(trans_x ? CblasTrans : CblasNoTrans, trans_y ? CblasTrans : CblasNoTrans, M, N, K, static_cast(1), x_ptr.data(), y_ptr.data(), static_cast(flag), out_ptr.data(), out_batch_size); } } template void MatMulFunction(const Context& context, const DenseTensor& X, const DenseTensor& Y, DenseTensor* Out, bool trans_x, bool trans_y, bool flag = false) { const std::vector x_dims = vectorize(X.dims()); const std::vector y_dims = vectorize(Y.dims()); MatMulFunction( context, X, Y, x_dims, y_dims, Out, trans_x, trans_y, flag); } template void MatmulKernel(const Context& context, const DenseTensor& x, const DenseTensor& y, bool transpose_x, bool transpose_y, DenseTensor* out) { PADDLE_ENFORCE_NE(paddle::framework::product(x.dims()), 0, paddle::platform::errors::InvalidArgument( "The Input(X) dims size must not be equal 0," " but reviced dims size is 0. ")); PADDLE_ENFORCE_NE(paddle::framework::product(y.dims()), 0, paddle::platform::errors::InvalidArgument( "The Input(Y) dims size must not be equal 0," " but reviced dims size is 0. ")); MatMulFunction(context, x, y, out, transpose_x, transpose_y); } } // namespace pten