// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/bernoulli_kernel.h" #include #include "paddle/phi/backends/cpu/cpu_context.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template inline T BernoulliFunctor(T p, T rand) { PADDLE_ENFORCE_LE( p, 1.0, phi::errors::OutOfRange("The probability should be <= 1, but got %f", p)); PADDLE_ENFORCE_GE( p, 0.0, phi::errors::OutOfRange("The probability should be >= 0, but got %f", p)); return static_cast(rand < p); } template void BernoulliKernel(const Context& ctx, const DenseTensor& x, DenseTensor* out) { auto numel = x.numel(); auto* x_data = x.data(); T* out_data = ctx.template Alloc(out); std::uniform_real_distribution dist(0.0, 1.0); auto gen_ptr = ctx.GetGenerator(); auto engine = gen_ptr->GetCPUEngine(); for (int64_t i = 0; i < numel; ++i) { out_data[i] = BernoulliFunctor(x_data[i], dist(*engine)); } } } // namespace phi PD_REGISTER_KERNEL( bernoulli, CPU, ALL_LAYOUT, phi::BernoulliKernel, float, double) {}