# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import numpy as np import argparse import time import math import paddle import paddle.fluid as fluid import paddle.fluid.profiler as profiler from paddle.fluid import core import unittest from multiprocessing import Process import os import signal import six import collections SEED = 1 DTYPE = "float32" paddle.dataset.mnist.fetch() # random seed must set before configuring the network. # fluid.default_startup_program().random_seed = SEED def cnn_model(data): conv_pool_1 = fluid.nets.simple_img_conv_pool( input=data, filter_size=5, num_filters=20, pool_size=2, pool_stride=2, act="relu") conv_pool_2 = fluid.nets.simple_img_conv_pool( input=conv_pool_1, filter_size=5, num_filters=50, pool_size=2, pool_stride=2, act="relu") # TODO(dzhwinter) : refine the initializer and random seed settting SIZE = 10 input_shape = conv_pool_2.shape param_shape = [six.moves.reduce(lambda a, b: a * b, input_shape[1:], 1) ] + [SIZE] scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5 predict = fluid.layers.fc( input=conv_pool_2, size=SIZE, act="softmax", param_attr=fluid.param_attr.ParamAttr( initializer=fluid.initializer.NormalInitializer( loc=0.0, scale=scale))) return predict def get_model(batch_size): # Input data images = fluid.layers.data(name='pixel', shape=[1, 28, 28], dtype=DTYPE) label = fluid.layers.data(name='label', shape=[1], dtype='int64') # Train program predict = cnn_model(images) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) # Evaluator batch_size_tensor = fluid.layers.create_tensor(dtype='int64') batch_acc = fluid.layers.accuracy( input=predict, label=label, total=batch_size_tensor) inference_program = fluid.default_main_program().clone() # Optimization opt = fluid.optimizer.AdamOptimizer( learning_rate=0.001, beta1=0.9, beta2=0.999) # Reader train_reader = paddle.batch( paddle.dataset.mnist.train(), batch_size=batch_size) test_reader = paddle.batch( paddle.dataset.mnist.test(), batch_size=batch_size) opt.minimize(avg_cost) return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers): t = fluid.DistributeTranspiler() t.transpile( trainer_id=trainer_id, program=main_program, pservers=pserver_endpoints, trainers=trainers) return t def operator_equal(a, b): for k, v in six.iteritems(a.__dict__): if isinstance(v, fluid.framework.Program) or \ isinstance(v, fluid.framework.Block): continue elif isinstance(v, core.OpDesc): if v.serialize_to_string() != b.__dict__[k].serialize_to_string(): raise ValueError("In operator_equal not equal:{0}\n".format(k)) elif isinstance(v, collections.OrderedDict): v0 = sorted(six.iteritems(v), key=lambda x: x[0]) v1 = sorted(six.iteritems(b.__dict__[k]), key=lambda x: x[0]) if v0 != v1: raise ValueError("In operator_equal not equal:{0}\n".format(k)) elif (v != b.__dict__[k]): raise ValueError("In operator_equal not equal:{0}\n".format(k)) return True def block_equal(a, b): for k, v in six.iteritems(a.__dict__): if isinstance(v, core.ProgramDesc) or isinstance( v, fluid.framework.Program) or isinstance(v, core.BlockDesc): continue elif k == "ops": for i in range(0, len(a.ops)): if not operator_equal(a.ops[i], b.ops[i]): raise ValueError("In block_equal not equal:{0}\n".format(k)) assert (len(a.ops) == len(b.ops)) elif isinstance(v, collections.OrderedDict): v0 = sorted(six.iteritems(v), key=lambda x: x[0]) v1 = sorted(six.iteritems(b.__dict__[k]), key=lambda x: x[0]) if v0 != v1: raise ValueError("In block_equal not equal:{0}\n".format(k)) elif (v != b.__dict__[k]): raise ValueError("In block_equal not equal:{0}\n".format(k)) return True def program_equal(a, b): for k, v in six.iteritems(a.__dict__): if isinstance(v, core.ProgramDesc): continue elif k == 'blocks': for i in range(0, len(a.blocks)): if not block_equal(a.blocks[i], b.blocks[i]): raise ValueError("In operator_equal not equal:{0}\n".format( k)) return False assert (len(a.blocks) == len(b.blocks)) elif (v != b.__dict__[k]): raise ValueError("In program_equal not equal:{0}\n".format(k)) return True class TestDistMnist(unittest.TestCase): def test_desc_clone(self): get_model(batch_size=20) pserver_endpoints = "127.0.0.1:9123" trainers = 1 current_endpoint = "127.0.0.1:9123" t = get_transpiler(0, fluid.default_main_program(), pserver_endpoints, trainers) pserver_prog = t.get_pserver_program(current_endpoint) startup_prog = t.get_startup_program(current_endpoint, pserver_prog) main = pserver_prog.clone() startup = startup_prog.clone() self.assertTrue(program_equal(main, pserver_prog)) self.assertTrue(program_equal(startup, startup_prog)) if __name__ == "__main__": unittest.main()