# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import time import unittest import os import sys import signal import subprocess import six import argparse import pickle import numpy as np import time import paddle.fluid as fluid from paddle.fluid import compiler import paddle.fluid.dygraph as dygraph from paddle.fluid.dygraph.base import to_variable from paddle.fluid.dygraph.parallel import DataParallel from paddle.fluid.incubate.fleet.collective import fleet, DistributedStrategy import paddle.fluid.incubate.fleet.base.role_maker as role_maker RUN_STEP = 5 DEFAULT_BATCH_SIZE = 2 def print_to_out(out_losses): if six.PY2: print(pickle.dumps(out_losses)) else: sys.stdout.buffer.write(pickle.dumps(out_losses)) def print_to_err(class_name, log_str): localtime = time.asctime(time.localtime(time.time())) print_str = localtime + "\t" + class_name + "\t" + log_str if six.PY2: sys.stderr.write(pickle.dumps(print_str)) else: sys.stderr.buffer.write(pickle.dumps(print_str)) def eprint(*args, **kwargs): print(*args, file=sys.stderr, **kwargs) class TestDistRunnerBase(object): def get_model(self, batch_size=DEFAULT_BATCH_SIZE, lr=0.1, single_device=False, use_dgc=False): raise NotImplementedError( "get_model should be implemented by child classes.") @staticmethod def get_transpiler(trainer_id, main_program, pserver_endpoints, trainers, sync_mode, dc_asgd=False, current_endpoint=None, nccl_comm_num=1): # NOTE: import fluid until runtime, or else forking processes will cause error. config = fluid.DistributeTranspilerConfig() config.enable_dc_asgd = dc_asgd config.sync_mode = sync_mode if nccl_comm_num > 1: config.nccl_comm_num = nccl_comm_num # config.runtime_split_send_recv = True t = fluid.DistributeTranspiler(config=config) t.transpile( trainer_id=trainer_id, program=main_program, pservers=pserver_endpoints, trainers=trainers, current_endpoint=current_endpoint) return t def run_pserver(self, args): self.lr = args.lr self.get_model(batch_size=args.batch_size) # NOTE: pserver should not call memory optimize t = self.get_transpiler(args.trainer_id, fluid.default_main_program(), args.endpoints, args.trainers, args.sync_mode, args.dc_asgd) pserver_prog = t.get_pserver_program(args.current_endpoint) startup_prog = t.get_startup_program(args.current_endpoint, pserver_prog) place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(startup_prog) print_to_err(type(self).__name__, "run pserver startup program done.") exe.run(pserver_prog) print_to_err(type(self).__name__, "run pserver main program done.") def run_gpu_fleet_api_trainer(self, args): assert args.update_method == "nccl2" self.lr = args.lr exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = 1 dist_strategy = DistributedStrategy() dist_strategy.exec_strategy = exec_strategy dist_strategy.fuse_memory_size = 1 #MB dist_strategy.fuse_laryer_size = 1 role = role_maker.PaddleCloudRoleMaker(is_collective=True) fleet.init(role) print_to_err("gpu_fleet", "fleet.node_num:") #"fleet.node_id:", fleet.node_id(), #"fleet.trainer_num:", fleet.worker_num()) test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \ self.get_model(batch_size=args.batch_size, dist_strategy=dist_strategy) trainer_prog = fleet._origin_program dist_prog = fleet.main_program device_id = int(os.getenv("FLAGS_selected_gpus", "0")) place = fluid.CUDAPlace(device_id) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) eprint(type(self).__name__, "run worker startup program done.") feed_var_list = [ var for var in trainer_prog.global_block().vars.values() if var.is_data ] feeder = fluid.DataFeeder(feed_var_list, place) reader_generator = train_reader() def get_data(): origin_batch = next(reader_generator) if args.update_method != "local" and args.use_reader_alloc: new_batch = [] for offset, item in enumerate(origin_batch): if offset % 2 == args.trainer_id: new_batch.append(item) return new_batch else: return origin_batch print_to_err(type(self).__name__, "begin to train on trainer") out_losses = [] for i in six.moves.xrange(RUN_STEP): loss, = exe.run(dist_prog, fetch_list=[avg_cost.name], feed=feeder.feed(get_data())) out_losses.append(loss[0]) print_to_err(type(self).__name__, "run step %d finished" % i) print_to_err(type(self).__name__, "trainer run finished") if six.PY2: print(pickle.dumps(out_losses)) else: sys.stdout.buffer.write(pickle.dumps(out_losses)) def run_trainer(self, args): self.lr = args.lr if args.nccl2_reduce_layer_local_run: test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \ self.get_model(batch_size=args.batch_size, single_device=True) elif args.use_dgc: test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \ self.get_model(batch_size=args.batch_size, use_dgc=args.use_dgc) else: test_program, avg_cost, train_reader, test_reader, batch_acc, predict = \ self.get_model(batch_size=args.batch_size) if args.update_method == "pserver": print_to_err( type(self).__name__, "begin to run transpile on trainer with pserver mode") t = self.get_transpiler(args.trainer_id, fluid.default_main_program(), args.endpoints, args.trainers, args.sync_mode, args.dc_asgd) trainer_prog = t.get_trainer_program() print_to_err( type(self).__name__, "get trainer program done with pserver mode.") elif args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer": # transpile for nccl2 config = fluid.DistributeTranspilerConfig() config.mode = "nccl2" config.nccl_comm_num = args.nccl_comm_num if args.use_hallreduce: config.use_hierarchical_allreduce = True config.hierarchical_allreduce_inter_nranks = args.hallreduce_inter_nranks print_to_err( type(self).__name__, "begin to run transpile on trainer with nccl2 mode") nccl2_t = fluid.DistributeTranspiler(config=config) nccl2_t.transpile( args.trainer_id, program=fluid.default_main_program(), startup_program=fluid.default_startup_program(), trainers=args.endpoints, current_endpoint=args.current_endpoint) print_to_err( type(self).__name__, "get trainer program done. with nccl2 mode") trainer_prog = fluid.default_main_program() else: print_to_err( type(self).__name__, "do nothing about main program, just use it") trainer_prog = fluid.default_main_program() print_to_err(type(self).__name__, "use main program done.") if args.use_cuda: device_id = int(os.getenv("FLAGS_selected_gpus", "0")) place = fluid.CUDAPlace(device_id) else: place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) print_to_err(type(self).__name__, "run worker startup program done.") exec_strategy = fluid.ExecutionStrategy() exec_strategy.num_threads = 1 build_stra = fluid.BuildStrategy() # FIXME force disable enable_inplace and memory_optimize build_stra.enable_inplace = False build_stra.memory_optimize = False if args.enable_backward_deps: build_stra.enable_backward_optimizer_op_deps = True if args.use_reduce: build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.Reduce else: build_stra.reduce_strategy = fluid.BuildStrategy.ReduceStrategy.AllReduce pass_builder = None if args.batch_merge_repeat > 1: pass_builder = build_stra._finalize_strategy_and_create_passes() mypass = pass_builder.insert_pass(0, "multi_batch_merge_pass") mypass.set("num_repeats", args.batch_merge_repeat) if args.update_method == "nccl2" or args.update_method == "nccl2_reduce_layer": build_stra.num_trainers = len(args.endpoints.split(",")) build_stra.trainer_id = args.trainer_id else: # case args.update_method == "nccl2_reduce_layer": build_stra.num_trainers = 1 build_stra.trainer_id = 0 print_to_err(type(self).__name__, "begin to compile with data parallel") binary = compiler.CompiledProgram(trainer_prog).with_data_parallel( loss_name=avg_cost.name, build_strategy=build_stra, exec_strategy=exec_strategy) print_to_err(type(self).__name__, "program compiled with data parallel") feed_var_list = [ var for var in trainer_prog.global_block().vars.values() if var.is_data ] feeder = fluid.DataFeeder(feed_var_list, place) reader_generator = train_reader() def get_data(): origin_batch = next(reader_generator) if args.update_method != "local" and args.use_reader_alloc: new_batch = [] for offset, item in enumerate(origin_batch): if offset % 2 == args.trainer_id: new_batch.append(item) return new_batch else: return origin_batch print_to_err(type(self).__name__, "begin to train on trainer") out_losses = [] for i in six.moves.xrange(RUN_STEP): loss, = exe.run(binary, fetch_list=[avg_cost.name], feed=feeder.feed(get_data())) out_losses.append(loss[0]) print_to_err(type(self).__name__, "run step %d finished" % i) print_to_err(type(self).__name__, "trainer run finished") print_to_out(out_losses) class TestParallelDyGraphRunnerBase(object): def get_model(self): raise NotImplementedError( "get_model should be implemented by child classes.") def run_one_loop(self, model, opt, data): raise NotImplementedError( "train_one_loop should be implemented by the child classes.") def run_trainer(self, args): seed = 90 device_id = int(os.getenv("FLAGS_selected_gpus", "0")) place = fluid.CUDAPlace(device_id) def _get_data(batch): if args.update_method != "local": new_batch = [] for offset, item in enumerate(batch): if offset % 2 == args.trainer_id: new_batch.append(item) return new_batch else: return batch with fluid.dygraph.guard(place): fluid.default_startup_program().random_seed = seed fluid.default_main_program().random_seed = seed np.random.seed(seed) import random random.seed = seed model, train_reader, opt = self.get_model() nranks = len(args.endpoints.split(",")) if args.endpoints else 1 if args.update_method == "nccl2": strategy = dygraph.parallel.ParallelStrategy() strategy.nranks = nranks strategy.local_rank = args.trainer_id strategy.trainer_endpoints = args.endpoints.split(",") strategy.current_endpoint = args.current_endpoint print_to_err( type(self).__name__, "begin to prepare context in dygraph with nccl2") dygraph.parallel.prepare_context(strategy) model = dygraph.parallel.DataParallel(model, strategy) print_to_err(type(self).__name__, "model built in dygraph") out_losses = [] print_to_err(type(self).__name__, "begin to run dygraph training") for step_id, data in enumerate(train_reader()): data = _get_data(data) if step_id == RUN_STEP: break loss = self.run_one_loop(model, opt, data) if step_id % 10 == 0: print_to_err( type(self).__name__, "loss at step %d: %f" % (step_id, loss.numpy())) out_losses.append(loss.numpy()) # FIXME(Yancey1989): scale the loss inplace if args.update_method == "nccl2": loss = model.scale_loss(loss) loss.backward() if args.update_method == "nccl2": model.apply_collective_grads() opt.minimize(loss) model.clear_gradients() print_to_out(out_losses) def runtime_main(test_class): parser = argparse.ArgumentParser(description='Run dist test.') parser.add_argument( '--role', type=str, required=True, choices=['pserver', 'trainer']) parser.add_argument('--endpoints', type=str, required=False, default="") parser.add_argument( '--update_method', type=str, default="local", choices=["pserver", "nccl2", "local", "nccl2_reduce_layer"]) parser.add_argument('--trainer_id', type=int, required=False, default=0) parser.add_argument('--trainers', type=int, required=False, default=1) parser.add_argument('--nccl_comm_num', type=int, required=False, default=1) parser.add_argument('--enable_backward_deps', action='store_true') parser.add_argument('--use_hallreduce', action='store_true') parser.add_argument('--gpu_fleet_api', action='store_true') parser.add_argument( '--hallreduce_inter_nranks', type=int, required=False, default=2) parser.add_argument( '--current_endpoint', type=str, required=False, default="") parser.add_argument('--sync_mode', action='store_true') parser.add_argument('--use_cuda', action='store_true') parser.add_argument('--use_dgc', action='store_true') parser.add_argument('--use_reduce', action='store_true') parser.add_argument('--dc_asgd', action='store_true') parser.add_argument( '--use_reader_alloc', action='store_true', required=False) parser.add_argument('--batch_size', required=False, type=int, default=2) parser.add_argument('--lr', required=False, type=float, default=0.001) parser.add_argument( '--batch_merge_repeat', required=False, type=int, default=1) parser.add_argument( '--nccl2_reduce_layer_local_run', required=False, type=bool, default=False) args = parser.parse_args() model = test_class() if args.role == "pserver" and args.update_method == "pserver": model.run_pserver(args) elif args.gpu_fleet_api: model.run_gpu_fleet_api_trainer(args) else: model.run_trainer(args) import paddle.compat as cpt import socket from contextlib import closing class TestDistBase(unittest.TestCase): def _setup_config(self): raise NotImplementedError("tests should have _setup_config implemented") def _after_setup_config(self): if self._enforce_place == "CPU": self.__use_cuda = False self._use_dgc = False elif self._enforce_place == "GPU": self.__use_cuda = True else: if fluid.core.is_compiled_with_cuda(): self.__use_cuda = True else: self.__use_cuda = False self._use_dgc = False if self._use_reduce: assert not self._use_dgc def setUp(self): self._trainers = 2 self._pservers = 2 self._port_set = set() self._ps_endpoints = "127.0.0.1:%s,127.0.0.1:%s" % ( self._find_free_port(), self._find_free_port()) self._python_interp = sys.executable self._sync_mode = True self._enforce_place = None self._use_reduce = False self._dc_asgd = False # must use with async mode self._use_reader_alloc = True self._nccl2_mode = False self._mp_mode = False # FIXME(typhoonzero): I added this stupid argument to enable # testing allreduce layers, which users can call layers.allreduce # to accumulate tensors at anywhere. Find a better way to do this # test, reduce check this argument everywhere. self._nccl2_reduce_layer = False self._lr = 0.001 self._use_dgc = False self._dygraph = False self._nccl_comm_num = 1 self._enable_backward_deps = False self._gpu_fleet_api = False self._use_hallreduce = False self._setup_config() self._after_setup_config() def _find_free_port(self): def __free_port(): with closing(socket.socket(socket.AF_INET, socket.SOCK_STREAM)) as s: s.bind(('', 0)) print_to_err( type(self).__name__, "socket name: %s" % s.getsockname()[1]) return s.getsockname()[1] while True: port = __free_port() if port not in self._port_set: self._port_set.add(port) return port def start_pserver(self, model_file, check_error_log, required_envs): ps0_ep, ps1_ep = self._ps_endpoints.split(",") ps_cmd = "%s" if os.getenv('WITH_COVERAGE', 'OFF') == 'ON': required_envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '') ps_cmd += " -m coverage run --branch -p" ps_cmd += " %s --role pserver --endpoints %s --trainer_id 0 --current_endpoint %s --trainers %d --update_method pserver" ps0_cmd = ps_cmd % \ (self._python_interp, model_file, self._ps_endpoints, ps0_ep, self._trainers) ps1_cmd = ps_cmd % \ (self._python_interp, model_file, self._ps_endpoints, ps1_ep, self._trainers) if self._sync_mode: ps0_cmd += " --sync_mode" ps1_cmd += " --sync_mode" print(ps0_cmd) print(ps1_cmd) ps0_pipe = open("/tmp/ps0_err.log", "wb") ps1_pipe = open("/tmp/ps1_err.log", "wb") print_to_err(type(self).__name__, "going to start pserver process 0") ps0_proc = subprocess.Popen( ps0_cmd.strip().split(" "), stdout=subprocess.PIPE, stderr=ps0_pipe, env=required_envs) print_to_err(type(self).__name__, "going to start pserver process 1") ps1_proc = subprocess.Popen( ps1_cmd.strip().split(" "), stdout=subprocess.PIPE, stderr=ps1_pipe, env=required_envs) return ps0_proc, ps1_proc, ps0_pipe, ps1_pipe def _run_local(self, model, envs, check_error_log=False, batch_size=DEFAULT_BATCH_SIZE, batch_merge_repeat=1): cmd = self._python_interp if os.getenv('WITH_COVERAGE', 'OFF') == 'ON': envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '') cmd += " -m coverage run --branch -p" cmd += " %s --role trainer --lr %f" % (model, self._lr) if batch_size != DEFAULT_BATCH_SIZE: cmd += " --batch_size %d" % batch_size if batch_merge_repeat > 1: cmd += " --batch_merge_repeat %d" % batch_merge_repeat if self._nccl2_reduce_layer: cmd += " --nccl2_reduce_layer_local_run 1" if self.__use_cuda: cmd += " --use_cuda" env_local = { "CUDA_VISIBLE_DEVICES": "0", "PADDLE_TRAINERS_NUM": "1", "PADDLE_TRAINER_ID": "0" } else: env_local = {'CPU_NUM': '1'} env_local.update(envs) print("local_cmd: {}, env: {}".format(cmd, env_local)) if check_error_log: err_log = open("/tmp/trainer.err.log", "wb") local_proc = subprocess.Popen( cmd.split(" "), stdout=subprocess.PIPE, stderr=err_log, env=env_local) else: local_proc = subprocess.Popen( cmd.split(" "), stdout=subprocess.PIPE, stderr=subprocess.PIPE, env=env_local) local_out, local_err = local_proc.communicate() if check_error_log: err_log.close() sys.stderr.write('local_stderr: %s\n' % local_err) sys.stderr.write('local_stdout: %s\n' % pickle.loads(local_out)) return pickle.loads(local_out) def _run_cluster(self, model, envs, check_error_log): # Run dist train to compare with local results ps0, ps1, ps0_pipe, ps1_pipe = self.start_pserver(model, check_error_log, envs) ps0_ep, ps1_ep = self._ps_endpoints.split(",") tr_cmd = "%s" if os.getenv('WITH_COVERAGE', 'OFF') == 'ON': envs['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '') tr_cmd += " -m coverage run --branch -p" tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --trainers %d --update_method pserver --lr %f" tr0_cmd = tr_cmd % \ (self._python_interp, model, self._ps_endpoints, 0, ps0_ep, self._trainers, self._lr) tr1_cmd = tr_cmd % \ (self._python_interp, model, self._ps_endpoints, 1, ps1_ep, self._trainers, self._lr) if self._sync_mode: tr0_cmd += " --sync_mode" tr1_cmd += " --sync_mode" if self._use_reduce: tr0_cmd += " --use_reduce" tr1_cmd += " --use_reduce" if self._use_reader_alloc: tr0_cmd += " --use_reader_alloc" tr1_cmd += " --use_reader_alloc" if self.__use_cuda: tr0_cmd += " --use_cuda" tr1_cmd += " --use_cuda" env0 = {"CUDA_VISIBLE_DEVICES": "0"} env1 = {"CUDA_VISIBLE_DEVICES": "1"} else: env0 = {'CPU_NUM': '1'} env1 = {'CPU_NUM': '1'} env0.update(envs) env1.update(envs) print("tr0_cmd: {}, env: {}".format(tr0_cmd, env0)) print("tr1_cmd: {}, env: {}".format(tr1_cmd, env1)) tr0_pipe = open("/tmp/tr0_err.log", "wb") tr1_pipe = open("/tmp/tr1_err.log", "wb") print_to_err(type(self).__name__, "going to start trainer process 0") tr0_proc = subprocess.Popen( tr0_cmd.strip().split(" "), stdout=subprocess.PIPE, stderr=tr0_pipe, env=env0) print_to_err(type(self).__name__, "going to start trainer process 1") tr1_proc = subprocess.Popen( tr1_cmd.strip().split(" "), stdout=subprocess.PIPE, stderr=tr1_pipe, env=env1) # Wait until trainer process terminate while True: stat0 = tr0_proc.poll() time.sleep(0.1) if stat0 is not None: break while True: stat1 = tr1_proc.poll() time.sleep(0.1) if stat1 is not None: break tr0_out, tr0_err = tr0_proc.communicate() tr1_out, tr1_err = tr1_proc.communicate() # close trainer file tr0_pipe.close() tr1_pipe.close() ps0_pipe.close() ps1_pipe.close() ps0.terminate() ps1.terminate() return pickle.loads(tr0_out), pickle.loads(tr1_out) def _get_nccl2_trainer_cmd(self, model, ep, update_method, trainer_id, trainer_num): env = {} tr_cmd = "%s -u" if os.getenv('WITH_COVERAGE', 'OFF') == 'ON': tr_cmd += " -m coverage run --branch -p" tr_cmd += " %s --role trainer --endpoints %s --trainer_id %d --current_endpoint %s --update_method %s --lr %f" tr_cmd = tr_cmd % \ (self._python_interp, model, self._ps_endpoints, trainer_id, ep, update_method, self._lr) if self._use_reduce: tr_cmd += " --use_reduce" if self._use_reader_alloc: tr_cmd += " --use_reader_alloc" if self.__use_cuda: tr_cmd += " --use_cuda" env.update({ "CUDA_VISIBLE_DEVICES": "{}".format(trainer_id), "PADDLE_TRAINERS_NUM": "{}".format(trainer_num), "PADDLE_TRAINER_ID": "{}".format(trainer_id), "PADDLE_TRAINER_ENDPOINTS": self._ps_endpoints, "PADDLE_CURRENT_ENDPOINT": ep, }) else: env.update({'CPU_NUM': '1'}) if self._use_dgc: tr_cmd += " --use_dgc" if self._mp_mode: env = {"FLAGS_selected_gpus": "{}".format(trainer_id)} if self._nccl_comm_num > 1: tr_cmd += " --nccl_comm_num {}".format(self._nccl_comm_num) if self._use_hallreduce: tr_cmd += " --use_hallreduce --hallreduce_inter_nranks 2" if self._enable_backward_deps: tr_cmd += " --enable_backward_deps" if self._gpu_fleet_api: tr_cmd += " --gpu_fleet_api" if os.getenv('WITH_COVERAGE', 'OFF') == 'ON': env['COVERAGE_FILE'] = os.getenv('COVERAGE_FILE', '') return tr_cmd, env def _run_cluster_nccl2(self, model, envs, nccl2_reduce_layer, check_error_log): if self._use_hallreduce: self._ps_endpoints = "" for i in range(0, 4): self._ps_endpoints += "127.0.0.1:%s," % (self._find_free_port()) self._ps_endpoints = self._ps_endpoints[:-1] # NOTE: we reuse ps_endpoints as nccl2 worker endpoints worker_endpoints = self._ps_endpoints.split(",") if nccl2_reduce_layer: update_method = "nccl2_reduce_layer" else: update_method = "nccl2" trainer_num = len(worker_endpoints) procs = [] pipes = [] for i in range(0, trainer_num): tr_cmd, tr_env = self._get_nccl2_trainer_cmd( model, worker_endpoints[i], update_method, i, trainer_num) tr_env.update(envs) print("use_hallreduce:{} tr_cmd:{}, env: {}".format( self._use_hallreduce, tr_cmd, tr_env)) tr_pipe = open("/tmp/tr{}_err.log".format(i), "wb") print_to_err( type(self).__name__, "going to start process {} with nccl2".format(i)) tr_proc = subprocess.Popen( tr_cmd.strip().split(" "), stdout=subprocess.PIPE, stderr=tr_pipe, env=tr_env) procs.append(tr_proc) pipes.append(tr_pipe) outs = [] for i in range(0, trainer_num): tr_out, tr_err = procs[i].communicate() outs.append(tr_out) pipes[i].close() sys.stderr.write('trainer {} stderr: {}\n'.format(i, tr_err)) if check_error_log: print("outs[0]:", outs[0]) print("outs[1]:", outs[1]) return pickle.loads(outs[0]), pickle.loads(outs[1]) def check_with_place(self, model_file, delta=1e-3, check_error_log=False, need_envs={}): # TODO(typhoonzero): should auto adapt GPU count on the machine. required_envs = { "PATH": os.getenv("PATH", ""), "PYTHONPATH": os.getenv("PYTHONPATH", ""), "LD_LIBRARY_PATH": os.getenv("LD_LIBRARY_PATH", ""), "FLAGS_fraction_of_gpu_memory_to_use": "0.15", "FLAGS_rpc_deadline": "30000", # 5sec to fail fast "FLAGS_cudnn_deterministic": "1", "http_proxy": "", "NCCL_P2P_DISABLE": "1", "NCCL_SHM_DISABLE": "1" } required_envs.update(need_envs) if check_error_log: required_envs["GLOG_v"] = "10" required_envs["GLOG_logtostderr"] = "1" local_losses\ = self._run_local(model_file, required_envs, check_error_log) if self._nccl2_mode: if self._nccl2_reduce_layer: tr0_losses, tr1_losses = self._run_cluster_nccl2( model_file, required_envs, True, check_error_log) else: tr0_losses, tr1_losses = self._run_cluster_nccl2( model_file, required_envs, False, check_error_log) else: tr0_losses, tr1_losses = self._run_cluster( model_file, required_envs, check_error_log) for step_id in range(RUN_STEP): local_loss = local_losses[step_id] tr0_loss = tr0_losses[step_id] tr1_loss = tr1_losses[step_id] dist_loss = (np.array([tr0_loss]) + np.array([tr1_loss])) / 2 print("=======", local_loss, ":", dist_loss[0], "=======") self.assertAlmostEqual(local_loss, dist_loss[0], delta=delta)