// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/roll_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void RollGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out_grad, const IntArray& shifts, const std::vector& axis, DenseTensor* x_grad) { using XPUType = typename XPUTypeTrait::Type; auto shifts_data = shifts.GetData(); dev_ctx.template Alloc(x_grad); DDim input_dim = x.dims(); std::vector xshape; size_t nums = shifts_data.size(); for (int i = 0; i < input_dim.size(); ++i) { xshape.emplace_back(input_dim[i]); } auto dims = axis; // axis = none, reshape to 1-D tensor if (dims.size() == 0) { dims.push_back(0l); input_dim = phi::Dim<1>(x.numel()); } std::vector shifts_in; std::vector axis_in; for (size_t i = 0; i < nums; ++i) { int a = dims[i]; if (a < 0) { a += (input_dim.size()); } axis_in.emplace_back(a); int sh = (0 - shifts_data[i]) % input_dim[a]; if (sh < 0) { sh += input_dim[a]; } shifts_in.emplace_back(sh); } int r = xpu::roll(dev_ctx.x_context(), reinterpret_cast(out_grad.data()), reinterpret_cast(x_grad->data()), xshape, shifts_in, axis_in); PADDLE_ENFORCE_XDNN_SUCCESS(r, "roll"); } } // namespace phi PD_REGISTER_KERNEL(roll_grad, XPU, ALL_LAYOUT, phi::RollGradKernel, float) {}