/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include "paddle/operators/math/detail/activation_functions.h" #include "paddle/operators/math/lstm_compute.h" #include "paddle/platform/cuda_helper.h" #include "paddle/platform/device_context.h" #include namespace paddle { namespace operators { namespace math { namespace detail { /* * threads(framePerBlock, batchPerBlock) * grid(frameBlocks, batchBlocks) */ template __global__ void KeLstmForward(Op op, LstmMetaValue value, int frameSize, int batchSize, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x; if (frameIdx >= frameSize) return; int batchIdx = 0; if (isBatch) { batchIdx = blockIdx.y * blockDim.y + threadIdx.y; if (batchIdx >= batchSize) return; value.gateValue += batchIdx * frameSize * 4; value.outputValue += batchIdx * frameSize; value.stateValue += batchIdx * frameSize; value.stateActiveValue += batchIdx * frameSize; } T rState; T rPrevState = 0; T rStateAtv; T rOut; T rValueIn; T rValueIg; T rValueFg; T rValueOg; T rCheckI = value.checkIg[frameIdx]; T rCheckF = value.checkFg[frameIdx]; T rCheckO = value.checkOg[frameIdx]; rValueIn = value.gateValue[frameIdx]; rValueIg = value.gateValue[frameIdx + frameSize]; rValueFg = value.gateValue[frameIdx + frameSize * 2]; rValueOg = value.gateValue[frameIdx + frameSize * 3]; if (value.prevStateValue) { if (isBatch) value.prevStateValue += batchIdx * frameSize; rPrevState = value.prevStateValue[frameIdx]; } op(rValueIn, rValueIg, rValueFg, rValueOg, rPrevState, rState, rStateAtv, rOut, rCheckI, rCheckF, rCheckO, active_node, active_gate, active_state); value.gateValue[frameIdx] = rValueIn; value.gateValue[frameIdx + frameSize] = rValueIg; value.gateValue[frameIdx + frameSize * 2] = rValueFg; value.gateValue[frameIdx + frameSize * 3] = rValueOg; value.stateValue[frameIdx] = rState; value.stateActiveValue[frameIdx] = rStateAtv; value.outputValue[frameIdx] = rOut; } /* * threads(framePerBlock, batchPerBlock) * grid(frameBlocks, batchBlocks) */ template __global__ void KeLstmBackward(Op op, LstmMetaValue value, LstmMetaGrad grad, int frameSize, int batchSize, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { const int frameIdx = blockIdx.x * blockDim.x + threadIdx.x; if (frameIdx >= frameSize) return; int batchIdx = 0; if (isBatch) { batchIdx = blockIdx.y * blockDim.y + threadIdx.y; if (batchIdx >= batchSize) return; value.gateValue += batchIdx * frameSize * 4; value.stateValue += batchIdx * frameSize; value.stateActiveValue += batchIdx * frameSize; grad.gateGrad += batchIdx * frameSize * 4; grad.stateGrad += batchIdx * frameSize; grad.outputGrad += batchIdx * frameSize; } T rValueIn; T rValueIg; T rValueFg; T rValueOg; T rGradIn; T rGradIg; T rGradFg; T rGradOg; T rPrevState = 0; T rPrevStateGrad; T rState; T rStateGrad; T rStateAtv; T rOutputGrad; T rCheckI = value.checkIg[frameIdx]; T rCheckF = value.checkFg[frameIdx]; T rCheckO = value.checkOg[frameIdx]; T rCheckIGrad; T rCheckFGrad; T rCheckOGrad; rValueIn = value.gateValue[frameIdx]; rValueIg = value.gateValue[frameIdx + frameSize]; rValueFg = value.gateValue[frameIdx + frameSize * 2]; rValueOg = value.gateValue[frameIdx + frameSize * 3]; rState = value.stateValue[frameIdx]; rStateAtv = value.stateActiveValue[frameIdx]; rOutputGrad = grad.outputGrad[frameIdx]; rStateGrad = grad.stateGrad[frameIdx]; if (value.prevStateValue) { if (isBatch) value.prevStateValue += batchIdx * frameSize; rPrevState = value.prevStateValue[frameIdx]; } op(rValueIn, rValueIg, rValueFg, rValueOg, rGradIn, rGradIg, rGradFg, rGradOg, rPrevState, rPrevStateGrad, rState, rStateGrad, rStateAtv, rOutputGrad, rCheckI, rCheckF, rCheckO, rCheckIGrad, rCheckFGrad, rCheckOGrad, active_node, active_gate, active_state); grad.gateGrad[frameIdx] = rGradIn; grad.gateGrad[frameIdx + frameSize] = rGradIg; grad.gateGrad[frameIdx + frameSize * 2] = rGradFg; grad.gateGrad[frameIdx + frameSize * 3] = rGradOg; grad.stateGrad[frameIdx] = rStateGrad; if (grad.prevStateGrad) { if (isBatch) grad.prevStateGrad += batchIdx * frameSize; grad.prevStateGrad[frameIdx] = rPrevStateGrad; } if (isBatch) { if (value.prevStateValue) { if (grad.checkIgGrad) paddle::platform::CudaAtomicAdd(grad.checkIgGrad + frameIdx, rCheckIGrad); if (grad.checkFgGrad) paddle::platform::CudaAtomicAdd(grad.checkFgGrad + frameIdx, rCheckFGrad); } if (grad.checkOgGrad) paddle::platform::CudaAtomicAdd(grad.checkOgGrad + frameIdx, rCheckOGrad); } else { if (value.prevStateValue) { if (grad.checkIgGrad) grad.checkIgGrad[frameIdx] += rCheckIGrad; if (grad.checkFgGrad) grad.checkFgGrad[frameIdx] += rCheckFGrad; } if (grad.checkOgGrad) grad.checkOgGrad[frameIdx] += rCheckOGrad; } } template void gpu_lstm_forward(const platform::DeviceContext& context, Op op, LstmMetaValue value, int frameSize, int batchSize, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { dim3 threads; dim3 grid; if (batchSize == 1) { int framePerBlock = frameSize <= 1024 ? frameSize : 1024; int frameBlocks = (frameSize + 1024 - 1) / 1024; threads = dim3(framePerBlock, 1); grid = dim3(frameBlocks, 1); } else { /* framePerBlock = 32 batchPerBlock = 32 */ threads = dim3(32, 32); grid = dim3((frameSize + 32 - 1) / 32, (batchSize + 32 - 1) / 32); } auto stream = reinterpret_cast(context).stream(); if (batchSize == 1) { KeLstmForward<<>>( op, value, frameSize, batchSize, active_node, active_gate, active_state); } else { KeLstmForward<<>>( op, value, frameSize, batchSize, active_node, active_gate, active_state); } } template void gpu_lstm_backward(const platform::DeviceContext& context, Op op, LstmMetaValue value, LstmMetaGrad grad, int frameSize, int batchSize, activation_mode_t active_node, activation_mode_t active_gate, activation_mode_t active_state) { dim3 threads; dim3 grid; if (batchSize == 1) { int framePerBlock = frameSize <= 1024 ? frameSize : 1024; int frameBlocks = (frameSize + 1024 - 1) / 1024; threads = dim3(framePerBlock, 1); grid = dim3(frameBlocks, 1); } else { /* framePerBlock = 32 batchPerBlock = 32 */ threads = dim3(32, 16); grid = dim3((frameSize + 32 - 1) / 32, (batchSize + 32 - 1) / 32); } auto stream = reinterpret_cast(context).stream(); if (batchSize == 1) { KeLstmBackward<<>>( op, value, grad, frameSize, batchSize, active_node, active_gate, active_state); } else { KeLstmBackward<<>>( op, value, grad, frameSize, batchSize, active_node, active_gate, active_state); } cudaStreamSynchronize(stream); // TODO(qingqing): Add cuda error check for each kernel. cudaError_t err = cudaGetLastError(); PADDLE_ENFORCE(err, cudaGetErrorString(err)); } } // namespace detail } // namespace math } // namespace operators } // namespace paddle