/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" namespace paddle { namespace operators { using Tensor = framework::Tensor; template using EigenTensor = framework::EigenTensor; template class MeanIoUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto& place = *ctx.template device_context().eigen_device(); // get input and output tensor auto* predictions = ctx.Input("Predictions"); auto* labels = ctx.Input("Labels"); auto* out_mean_iou = ctx.Output("OutMeanIou"); auto* out_wrong = ctx.Output("OutWrong"); auto* out_correct = ctx.Output("OutCorrect"); int num_classes = static_cast(ctx.Attr("num_classes")); // get data ptr const T* predictions_data = predictions->data(); const T* labels_data = labels->data(); float* out_mean_iou_data = out_mean_iou->mutable_data(ctx.GetPlace()); int* out_wrong_data = out_wrong->mutable_data(ctx.GetPlace()); int* out_correct_data = out_correct->mutable_data(ctx.GetPlace()); // get eigen tensor auto out_mean_iou_t = EigenTensor::From(*out_mean_iou); auto out_wrong_t = EigenTensor::From(*out_wrong); auto out_correct_t = EigenTensor::From(*out_correct); // Tmp tensor Tensor denominator; Tensor valid_count; Tensor iou_sum; // get data ptr of tmp tensor int* denominator_data = denominator.mutable_data( {static_cast(num_classes)}, ctx.GetPlace()); int* valid_count_data = valid_count.mutable_data({1}, ctx.GetPlace()); float* iou_sum_data = iou_sum.mutable_data({1}, ctx.GetPlace()); // get eigen tensor of tmp tensor auto denominator_t = EigenTensor::From(denominator); auto valid_count_t = EigenTensor::From(valid_count); auto iou_sum_t = EigenTensor::From(iou_sum); // init out_wrong, out_correct and out_mean_iou out_wrong_t = out_wrong_t.constant(0); out_correct_t = out_correct_t.constant(0); out_mean_iou_t = out_mean_iou_t.constant(0); // collect pre wrong, correct and mean_iou auto in_mean_ious = ctx.MultiInput("InMeanIou"); for (size_t i = 0; i < in_mean_ious.size(); ++i) { out_mean_iou_t.device(place) += EigenTensor::From(*in_mean_ious[i]); } auto in_wrongs = ctx.MultiInput("InWrongs"); for (size_t i = 0; i < in_wrongs.size(); ++i) { out_wrong_t.device(place) += EigenTensor::From(*in_wrongs[i]); } auto in_corrects = ctx.MultiInput("InCorrects"); for (size_t i = 0; i < in_corrects.size(); ++i) { out_correct_t.device(place) += EigenTensor::From(*in_corrects[i]); } // compute for (int64_t i = 0; i < predictions->numel(); ++i) { if (predictions_data[i] == labels_data[i]) { out_correct_data[predictions_data[i]] += 1; } else { out_wrong_data[labels_data[i]] += 1; out_wrong_data[predictions_data[i]] += 1; } } denominator_t = out_wrong_t + out_correct_t; valid_count_t = (denominator_t > denominator_t.constant(0.0f)).cast().sum(); for (int i = 0; i < num_classes; ++i) { if (denominator_data[i] == 0) { denominator_data[i] = 1; } } iou_sum_t = (out_correct_t.cast() / denominator_t.cast()).sum(); out_mean_iou_data[0] += (iou_sum_data[0] / valid_count_data[0]); } }; } // namespace operators } // namespace paddle