# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import argparse import logging import time import paddle.fluid as fluid import paddle.fluid.incubate.fleet.base.role_maker as role_maker from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet from paddle.fluid.transpiler.distribute_transpiler import DistributeTranspilerConfig from paddle.fluid.log_helper import get_logger import ctr_dataset_reader logger = get_logger( "fluid", logging.INFO, fmt='%(asctime)s - %(levelname)s - %(message)s') def parse_args(): parser = argparse.ArgumentParser(description="PaddlePaddle Fleet ctr") # the following arguments is used for distributed train, if is_local == false, then you should set them parser.add_argument( '--role', type=str, default='pserver', # trainer or pserver help='The path for model to store (default: models)') parser.add_argument( '--endpoints', type=str, default='127.0.0.1:6000', help='The pserver endpoints, like: 127.0.0.1:6000,127.0.0.1:6001') parser.add_argument( '--current_endpoint', type=str, default='127.0.0.1:6000', help='The path for model to store (default: 127.0.0.1:6000)') parser.add_argument( '--trainer_id', type=int, default=0, help='The path for model to store (default: models)') parser.add_argument( '--trainers', type=int, default=1, help='The num of trainers, (default: 1)') return parser.parse_args() def model(): dnn_input_dim, lr_input_dim, train_file_path = ctr_dataset_reader.prepare_data( ) """ network definition """ dnn_data = fluid.layers.data( name="dnn_data", shape=[-1, 1], dtype="int64", lod_level=1, append_batch_size=False) lr_data = fluid.layers.data( name="lr_data", shape=[-1, 1], dtype="int64", lod_level=1, append_batch_size=False) label = fluid.layers.data( name="click", shape=[-1, 1], dtype="int64", lod_level=0, append_batch_size=False) datas = [dnn_data, lr_data, label] # build dnn model dnn_layer_dims = [128, 64, 32, 1] dnn_embedding = fluid.layers.embedding( is_distributed=False, input=dnn_data, size=[dnn_input_dim, dnn_layer_dims[0]], param_attr=fluid.ParamAttr( name="deep_embedding", initializer=fluid.initializer.Constant(value=0.01)), is_sparse=True) dnn_pool = fluid.layers.sequence_pool(input=dnn_embedding, pool_type="sum") dnn_out = dnn_pool for i, dim in enumerate(dnn_layer_dims[1:]): fc = fluid.layers.fc( input=dnn_out, size=dim, act="relu", param_attr=fluid.ParamAttr( initializer=fluid.initializer.Constant(value=0.01)), name='dnn-fc-%d' % i) dnn_out = fc # build lr model lr_embbding = fluid.layers.embedding( is_distributed=False, input=lr_data, size=[lr_input_dim, 1], param_attr=fluid.ParamAttr( name="wide_embedding", initializer=fluid.initializer.Constant(value=0.01)), is_sparse=True) lr_pool = fluid.layers.sequence_pool(input=lr_embbding, pool_type="sum") merge_layer = fluid.layers.concat(input=[dnn_out, lr_pool], axis=1) predict = fluid.layers.fc(input=merge_layer, size=2, act='softmax') acc = fluid.layers.accuracy(input=predict, label=label) auc_var, batch_auc_var, auc_states = fluid.layers.auc(input=predict, label=label) cost = fluid.layers.cross_entropy(input=predict, label=label) avg_cost = fluid.layers.mean(x=cost) return datas, avg_cost, predict, train_file_path def train(args): datas, avg_cost, predict, train_file_path = model() endpoints = args.endpoints.split(",") if args.role.upper() == "PSERVER": current_id = endpoints.index(args.current_endpoint) else: current_id = 0 role = role_maker.UserDefinedRoleMaker( current_id=current_id, role=role_maker.Role.WORKER if args.role.upper() == "TRAINER" else role_maker.Role.SERVER, worker_num=args.trainers, server_endpoints=endpoints) exe = fluid.Executor(fluid.CPUPlace()) fleet.init(role) strategy = DistributeTranspilerConfig() strategy.sync_mode = False optimizer = fluid.optimizer.SGD(learning_rate=0.0001) optimizer = fleet.distributed_optimizer(optimizer, strategy) optimizer.minimize(avg_cost) if fleet.is_server(): logger.info("run pserver") fleet.init_server() fleet.run_server() elif fleet.is_worker(): logger.info("run trainer") fleet.init_worker() exe.run(fleet.startup_program) thread_num = 2 filelist = [] for _ in range(thread_num): filelist.append(train_file_path) # config dataset dataset = fluid.DatasetFactory().create_dataset() dataset.set_batch_size(128) dataset.set_use_var(datas) pipe_command = 'python ctr_dataset_reader.py' dataset.set_pipe_command(pipe_command) dataset.set_filelist(filelist) dataset.set_thread(thread_num) for epoch_id in range(10): logger.info("epoch {} start".format(epoch_id)) pass_start = time.time() dataset.set_filelist(filelist) exe.train_from_dataset( program=fleet.main_program, dataset=dataset, fetch_list=[avg_cost], fetch_info=["cost"], print_period=100, debug=False) pass_time = time.time() - pass_start logger.info("epoch {} finished, pass_time {}".format(epoch_id, pass_time)) fleet.stop_worker() if __name__ == "__main__": args = parse_args() train(args)