/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/fluid/operators/math/math_function.h" #include "paddle/fluid/operators/math/sample_prob.h" #include "paddle/fluid/operators/math/softmax.h" #include "paddle/fluid/operators/sample_logits_op.h" namespace paddle { namespace operators { DEFINE_bool(debug_print, true, "run debug mode"); // UNDERSTAND: something like take_along_axis in numpy. template __global__ void GPUTakeAlongD1(size_t size, const int batch_size, const int array_slice_size, const int idx_slice_size, const T* p_array, const int64_t* p_index, T* p_value) { const auto value_slice_size = idx_slice_size; int idx = blockDim.x * blockIdx.x + threadIdx.x; int step_size = blockDim.x * gridDim.x; for (; idx < size; idx += step_size) { int i = idx / idx_slice_size; auto array_index = p_index[idx]; p_value[idx] = p_array[i * array_slice_size + array_index]; } } // UNDERSTAND: something like put_along_axis in numpy but if there is duplicate // indices, scatter is done in += way. template __global__ void GPUPutAlongD1(size_t size, const int batch_size, const int array_slice_size, const int idx_slice_size, T* p_array, const int64_t* p_index, const T* p_value) { const auto value_slice_size = idx_slice_size; int idx = blockDim.x * blockIdx.x + threadIdx.x; int step_size = blockDim.x * gridDim.x; // size == batch_size for (; idx < size; idx += step_size) { int i = idx; for (int j = 0; j < idx_slice_size; ++j) { auto array_index = p_index[i * idx_slice_size + j]; p_array[i * array_slice_size + array_index] += p_value[i * idx_slice_size + j]; } } } // UNDERSTAND: set label as 0,1,...,num_true-1 template __global__ void GPUSetLabel(size_t size, const int num_true, int64_t* p_array) { int idx = blockDim.x * blockIdx.x + threadIdx.x; int step_size = blockDim.x * gridDim.x; for (; idx < size; idx += step_size) { p_array[idx] = idx % num_true; } } // UNDERSTAND: compute accidentdal hits from samples and minus corresponding // logits by a float max, here 1e20 template __global__ void gpu_compute_remove_accidental_hits(const int size, const int num_true, const int idx_slice_size, const int64_t* p_index, T* p_value) { const auto value_slice_size = idx_slice_size; int idx = blockDim.x * blockIdx.x + threadIdx.x; int step_size = blockDim.x * gridDim.x; for (; idx < size; idx += step_size) { int i = idx / idx_slice_size; if (idx % idx_slice_size < num_true) continue; for (int j = 0; j < num_true; ++j) { const auto true_idx = i * idx_slice_size + j; if (p_index[true_idx] == p_index[idx]) { p_value[idx] -= 1e20; break; } } } } template class SampleLogitsCUDAKernel : public framework::OpKernel { public: using Tensor = framework::Tensor; template void Print(const Tensor& t, std::string name) const { if (!FLAGS_debug_print) { return; } VLOG(1) << "qxz print " << name; VLOG(1) << name << "size = " << t.numel(); size_t size = t.numel(); type* d = t.data(); #ifdef PADDLE_WITH_CUDA std::vector vec; platform::DeviceContextPool::Instance().Get(t.place())->Wait(); if (platform::is_gpu_place(t.place())) { vec.resize(size); cudaMemcpy(vec.data(), d, sizeof(T) * size, cudaMemcpyDeviceToHost); d = vec.data(); } #endif VLOG(1) << name << " data_ptr = " << static_cast(d); std::string out; for (size_t i = 0; i < size; i++) { out += std::to_string(d[i]); out += ","; } VLOG(1) << out; } void Compute(const framework::ExecutionContext& context) const override { // get necessary inputs const Tensor* logits = context.Input("Logits"); const Tensor* label = context.Input("Label"); VLOG(3) << "Enter SampleLogitsCUDAKernel"; // get necessary outputs Tensor* samples = context.Output("Samples"); Tensor* probabilities = context.Output("Probabilities"); Tensor* sampled_logits = context.Output("SampledLogits"); Tensor* sampled_label = context.Output("SampledLabel"); // shapes const auto batch_size = logits->dims()[0]; const auto num_classes = logits->dims()[1]; const auto label_dim = label->dims(); const auto num_true = label_dim[1]; const auto samples_dim = samples->dims(); // attrs const auto num_samples = context.Attr("num_samples"); const bool use_custom_samples = context.Attr("use_custom_samples"); const bool uniq = context.Attr("uniq"); const bool remove_accidental_hits = context.Attr("remove_accidental_hits"); // device contexts auto& dev_ctx = context.cuda_device_context(); // UNDERSTAND: allocate memories for temporaries sampled_logits->mutable_data(samples_dim, context.GetPlace()); math::SetConstant set_zero; set_zero(dev_ctx, sampled_logits, static_cast(0)); auto sampled_label_data = sampled_label->mutable_data(label_dim, context.GetPlace()); int threads = 512; size_t size = batch_size * num_true; int grid = (size + threads - 1) / threads; GPUSetLabel< T><<>>( size, num_true, sampled_label_data); if (use_custom_samples) { const Tensor* custom_samples = context.Input("CustomSamples"); const Tensor* custom_probabilities = context.Input("CustomProbabilities"); samples->ShareDataWith(*custom_samples); probabilities->ShareDataWith(*custom_probabilities); } else { samples->mutable_data(context.GetPlace()); probabilities->mutable_data(samples_dim, context.GetPlace()); // UNDERSTAND: sampling const auto seed = context.Attr("seed"); auto sampler_with_prob = math::GPUSampleWithProb(); Print(*samples, std::string("samples1")); sampler_with_prob(context.cuda_device_context(), seed, num_classes, uniq, num_samples, label, samples, probabilities); } Print(*samples, std::string("samples2")); Print(*probabilities, std::string("probabilities")); // UNDERSTAND: gather sampled logits and remove accidental hits if needed const auto num_take = samples->dims()[1]; const auto array_dims = logits->dims(); const auto idx_dims = samples->dims(); const T* p_array = logits->data(); const int64_t* p_index = samples->data(); T* p_value = sampled_logits->data(); // src slice size const auto array_slice_size = array_dims[1]; // index slice size const auto idx_slice_size = idx_dims[1]; size = batch_size * num_take; grid = (size + threads - 1) / threads; GPUTakeAlongD1< T><<>>( size, batch_size, array_slice_size, idx_slice_size, p_array, p_index, p_value); Print(*sampled_logits, std::string("sampled_logits")); if (remove_accidental_hits) { const size_t size = batch_size * (num_true + num_samples); int grid = (size + threads - 1) / threads; gpu_compute_remove_accidental_hits< T><<>>( size, num_true, idx_slice_size, p_index, p_value); Print(*sampled_logits, std::string("sampled_logits_remove_accidental_hits")); } // subtracted sampled logits with logQ(y|x) auto probs = EigenMatrix::From(*probabilities); auto smp_logits = EigenMatrix::From(*sampled_logits); smp_logits.device(*dev_ctx.eigen_device()) = (smp_logits - probs.log().unaryExpr(TolerableValue())) .unaryExpr(TolerableValue()); Print(*sampled_logits, std::string("sampled_logits_res")); } }; template class SampleLogitsGradCUDAKernel : public framework::OpKernel { public: using Tensor = framework::Tensor; template void Print(const Tensor& t, std::string name) const { if (!FLAGS_debug_print) { return; } VLOG(1) << "qxz print " << name; VLOG(1) << name << "size = " << t.numel(); size_t size = t.numel(); const type* d = t.data(); #ifdef PADDLE_WITH_CUDA std::vector vec; platform::DeviceContextPool::Instance().Get(t.place())->Wait(); if (platform::is_gpu_place(t.place())) { vec.resize(size); cudaMemcpy(vec.data(), d, sizeof(T) * size, cudaMemcpyDeviceToHost); d = vec.data(); } #endif VLOG(1) << name << " data_ptr = " << static_cast(d); std::string out; for (size_t i = 0; i < size; i++) { out += std::to_string(d[i]); out += ","; } VLOG(1) << out; } void Compute(const framework::ExecutionContext& context) const override { auto logits_grad = context.Output(framework::GradVarName("Logits")); const Tensor* samples = context.Input("Samples"); const Tensor* sampled_logits_grad = context.Input(framework::GradVarName("SampledLogits")); logits_grad->mutable_data(context.GetPlace()); auto& dev_ctx = context.cuda_device_context(); math::SetConstant set_zero; set_zero(dev_ctx, logits_grad, static_cast(0)); // UNDERSTAND: scatter it back to logit_grad const auto batch_size = samples->dims()[0]; const auto num_put = samples->dims()[1]; const auto array_dims = logits_grad->dims(); const auto idx_dims = samples->dims(); T* p_array = logits_grad->data(); const int64_t* p_index = samples->data(); const T* p_value = sampled_logits_grad->data(); // src slice size const auto array_slice_size = array_dims[1]; // index slice size const auto idx_slice_size = idx_dims[1]; int threads = 128; const size_t size = batch_size; int grid = (size + threads - 1) / threads; Print(*sampled_logits_grad, std::string("sampled_logits_grad")); Print(*samples, std::string("samples")); GPUPutAlongD1< T><<>>( size, batch_size, array_slice_size, idx_slice_size, p_array, p_index, p_value); Print(*logits_grad, std::string("logits_grad")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL(sample_logits, ops::SampleLogitsCUDAKernel, ops::SampleLogitsCUDAKernel); REGISTER_OP_CUDA_KERNEL(sample_logits_grad, ops::SampleLogitsGradCUDAKernel, ops::SampleLogitsGradCUDAKernel);