// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #ifdef PADDLE_WITH_XPU #include "paddle/fluid/operators/reduce_ops/reduce_op_function.h" #include "paddle/fluid/platform/device/xpu/xpu_header.h" #include "paddle/fluid/platform/device_context.h" namespace paddle { namespace operators { template class XPULogsumexpKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* input = context.Input("X"); auto* output = context.Output("Out"); auto axis = context.Attr>("axis"); auto reduce_all = context.Attr("reduce_all"); const auto& input_dim_size = input->dims().size(); // The dims has full dim, set the reduce_all is True reduce_all |= (static_cast(axis.size()) == input_dim_size); const T* input_data = input->data(); T* output_data = output->mutable_data(context.GetPlace()); std::vector axis_shape; std::vector xdims(input_dim_size); for (int i = 0; i < input_dim_size; ++i) { xdims[i] = input->dims()[i]; } if (reduce_all) { for (int i = 0; i < input_dim_size; ++i) { axis_shape.push_back(i); } } else { for (size_t i = 0; i < axis.size(); ++i) { int rdim = axis[i] < 0 ? axis[i] + input_dim_size : axis[i]; axis_shape.push_back(rdim); } } auto& dev_ctx = context.template device_context(); int r = xpu::logsumexp( dev_ctx.x_context(), input_data, output_data, xdims, axis_shape); PADDLE_ENFORCE_EQ(r, xpu::Error_t::SUCCESS, platform::errors::External( "XPU logsumexp kernel error! error value[%d %]", r, XPUAPIErrorMsg[r])); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_XPU_KERNEL( logsumexp, ops::XPULogsumexpKernel); #endif