# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest import numpy as np from op_test import OpTest import paddle.fluid.core as core from paddle.fluid.op import Operator class TestSumOp(OpTest): def setUp(self): self.op_type = "sum" self.use_mkldnn = False self.init_kernel_type() x0 = np.random.random((3, 4)).astype('float32') x1 = np.random.random((3, 4)).astype('float32') x2 = np.random.random((3, 4)).astype('float32') self.inputs = {"X": [("x0", x0), ("x1", x1), ("x2", x2)]} y = x0 + x1 + x2 self.outputs = {'Out': y} self.attrs = {'use_mkldnn': self.use_mkldnn} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(['x0'], 'Out') def init_kernel_type(self): pass class TestSelectedRowsSumOp(OpTest): def check_with_place(self, place, inplace): scope = core.Scope() self.height = 10 self.row_numel = 12 self.rows = [0, 1, 2, 3, 4, 5, 6] self.check_input_and_optput(scope, place, inplace, True, True, True) self.check_input_and_optput(scope, place, inplace, False, True, True) self.check_input_and_optput(scope, place, inplace, False, False, True) self.check_input_and_optput(scope, place, inplace, False, False, False) def _get_array(self, row_num, row_numel): array = np.ones((row_num, row_numel)).astype("float32") for i in range(row_num): array[i] *= i return array def check_input_and_optput(self, scope, place, inplace, w1_has_data=False, w2_has_data=False, w3_has_data=False): self.create_selected_rows(scope, place, "W1", w1_has_data) self.create_selected_rows(scope, place, "W2", w2_has_data) self.create_selected_rows(scope, place, "W3", w3_has_data) # create Out Variable if inplace: out_var_name = "W1" else: out_var_name = "Out" out = scope.var(out_var_name).get_selected_rows() # create and run sum operator sum_op = Operator("sum", X=["W1", "W2", "W3"], Out=out_var_name) sum_op.run(scope, place) has_data_w_num = 0 for has_data in [w1_has_data, w2_has_data, w3_has_data]: if has_data: has_data_w_num += 1 if has_data_w_num > 0: self.assertEqual(len(out.rows()), 7) self.assertTrue( np.array_equal( np.array(out.get_tensor()), self._get_array(len(self.rows), self.row_numel) * has_data_w_num)) else: self.assertEqual(len(out.rows()), 0) self.assertTrue( np.array_equal( np.array(out.get_tensor()), self._get_array(0, self.row_numel) * has_data_w_num)) def create_selected_rows(self, scope, place, var_name, has_data): # create and initialize W Variable if has_data: rows = self.rows else: rows = [] var = scope.var(var_name) w_selected_rows = var.get_selected_rows() w_selected_rows.set_height(self.height) w_selected_rows.set_rows(rows) w_array = self._get_array(len(rows), self.row_numel) w_tensor = w_selected_rows.get_tensor() w_tensor.set(w_array, place) return var def test_w_is_selected_rows(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) for place in places: for inplace in [True, False]: self.check_with_place(place, inplace) if __name__ == "__main__": unittest.main()