# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest, convert_float_to_uint16 import paddle import paddle.fluid as fluid from paddle.fluid.framework import Program, program_guard paddle.enable_static() class TestStackOpBase(OpTest): def initDefaultParameters(self): self.num_inputs = 4 self.input_dim = (5, 6, 7) self.axis = 0 self.dtype = 'float64' def initParameters(self): pass def get_x_names(self): x_names = [] for i in range(self.num_inputs): x_names.append('x{}'.format(i)) return x_names def setUp(self): self.initDefaultParameters() self.initParameters() self.op_type = 'stack' self.python_api = paddle.stack self.x = [] for i in range(self.num_inputs): self.x.append( np.random.random(size=self.input_dim).astype(self.dtype) ) tmp = [] x_names = self.get_x_names() for i in range(self.num_inputs): tmp.append((x_names[i], self.x[i])) self.inputs = {'X': tmp} self.outputs = {'Y': np.stack(self.x, axis=self.axis)} self.attrs = {'axis': self.axis} def test_check_output(self): self.check_output(check_eager=True) def test_check_grad(self): self.check_grad(self.get_x_names(), 'Y', check_eager=True) class TestStackOp1(TestStackOpBase): def initParameters(self): self.num_inputs = 8 class TestStackOp2(TestStackOpBase): def initParameters(self): self.num_inputs = 10 class TestStackOp3(TestStackOpBase): def initParameters(self): self.axis = -1 class TestStackOp4(TestStackOpBase): def initParameters(self): self.axis = -4 class TestStackOp5(TestStackOpBase): def initParameters(self): self.axis = 1 class TestStackOp6(TestStackOpBase): def initParameters(self): self.axis = 3 class TestStackOp_ZeroDim(TestStackOpBase): def initParameters(self): self.input_dim = () class TestStackBF16Op(OpTest): def initDefaultParameters(self): self.num_inputs = 4 self.input_dim = (5, 6, 7) self.axis = 0 self.dtype = np.uint16 def initParameters(self): pass def get_x_names(self): x_names = [] for i in range(self.num_inputs): x_names.append('x{}'.format(i)) return x_names def setUp(self): self.initDefaultParameters() self.initParameters() self.op_type = 'stack' self.python_api = paddle.stack self.x = [] for i in range(self.num_inputs): self.x.append( np.random.random(size=self.input_dim).astype(np.float32) ) out = np.stack(self.x, axis=self.axis) tmp = [] x_names = self.get_x_names() for i in range(self.num_inputs): tmp.append((x_names[i], convert_float_to_uint16(self.x[i]))) self.inputs = {'X': tmp} self.outputs = {'Y': convert_float_to_uint16(out)} self.attrs = {'axis': self.axis} def test_check_output(self): self.check_output(check_eager=True) def test_check_grad(self): self.check_grad(self.get_x_names(), 'Y', check_eager=True) class TestStackAPIWithLoDTensorArray(unittest.TestCase): """ Test stack api when the input(x) is a LoDTensorArray. """ def setUp(self): self.axis = 1 self.iter_num = 3 self.input_shape = [2, 3] self.x = np.random.random(self.input_shape).astype("float32") self.place = ( fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace() ) self.set_program() def set_program(self): self.program = fluid.Program() with fluid.program_guard(self.program): input = fluid.layers.assign(self.x) tensor_array = paddle.tensor.create_array(dtype='float32') zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64") for i in range(self.iter_num): paddle.tensor.array_write(input, zero + i, tensor_array) self.out_var = paddle.stack(tensor_array, axis=self.axis) def test_case(self): self.assertTrue(self.out_var.shape[self.axis] == -1) exe = fluid.Executor(self.place) res = exe.run(self.program, fetch_list=self.out_var) np.testing.assert_array_equal( res[0], np.stack([self.x] * self.iter_num, axis=self.axis) ) class TestTensorStackAPIWithLoDTensorArray(unittest.TestCase): """ Test stack api when the input(x) is a LoDTensorArray. """ def setUp(self): self.axis = 1 self.iter_num = 3 self.input_shape = [2, 3] self.x = np.random.random(self.input_shape).astype("float32") self.place = ( fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda() else fluid.CPUPlace() ) self.set_program() def set_program(self): self.program = fluid.Program() with fluid.program_guard(self.program): input = fluid.layers.assign(self.x) tensor_array = paddle.tensor.create_array(dtype='float32') zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64") for i in range(self.iter_num): paddle.tensor.array_write(input, zero + i, tensor_array) self.out_var = paddle.stack(tensor_array, axis=self.axis) def test_case(self): self.assertTrue(self.out_var.shape[self.axis] == -1) exe = fluid.Executor(self.place) res = exe.run(self.program, fetch_list=self.out_var) np.testing.assert_array_equal( res[0], np.stack([self.x] * self.iter_num, axis=self.axis) ) class API_test(unittest.TestCase): def test_out(self): with fluid.program_guard(fluid.Program(), fluid.Program()): data1 = paddle.static.data('data1', shape=[1, 2], dtype='float64') data2 = paddle.static.data('data2', shape=[1, 2], dtype='float64') data3 = paddle.static.data('data3', shape=[1, 2], dtype='float64') result_stack = paddle.stack([data1, data2, data3], axis=0) place = fluid.CPUPlace() exe = fluid.Executor(place) input1 = np.random.random([1, 2]).astype('float64') input2 = np.random.random([1, 2]).astype('float64') input3 = np.random.random([1, 2]).astype('float64') (result,) = exe.run( feed={"data1": input1, "data2": input2, "data3": input3}, fetch_list=[result_stack], ) expected_result = np.stack([input1, input2, input3], axis=0) np.testing.assert_allclose(expected_result, result, rtol=1e-05) def test_single_tensor_error(self): with fluid.program_guard(fluid.Program(), fluid.Program()): x = paddle.rand([2, 3]) self.assertRaises(TypeError, paddle.stack, x) class API_DygraphTest(unittest.TestCase): def test_out(self): data1 = np.array([[1.0, 2.0]]) data2 = np.array([[3.0, 4.0]]) data3 = np.array([[5.0, 6.0]]) with fluid.dygraph.guard(): x1 = fluid.dygraph.to_variable(data1) x2 = fluid.dygraph.to_variable(data2) x3 = fluid.dygraph.to_variable(data3) result = paddle.stack([x1, x2, x3]) result_np = result.numpy() expected_result = np.stack([data1, data2, data3]) np.testing.assert_allclose(expected_result, result_np, rtol=1e-05) with fluid.dygraph.guard(): y1 = fluid.dygraph.to_variable(data1) result = paddle.stack([y1], axis=0) result_np_2 = result.numpy() expected_result_2 = np.stack([data1], axis=0) np.testing.assert_allclose(expected_result_2, result_np_2, rtol=1e-05) def test_single_tensor_error(self): with fluid.dygraph.guard(): x = paddle.to_tensor([1, 2, 3]) self.assertRaises(Exception, paddle.stack, x) class TestStackOpWithNegativeShape(unittest.TestCase): def test_out(self): main_prg, startup_prg = Program(), Program() with program_guard(main_prg, startup_prg): b = paddle.static.data(name='b', shape=[-1], dtype='int64') e = paddle.static.data(name='e', shape=[3], dtype='int64') k = paddle.stack([b, e], axis=0) exe = paddle.static.Executor() exe.run(startup_prg) out = exe.run( main_prg, feed={ 'b': np.ones( [ 3, ] ).astype("int64"), 'e': np.zeros( [ 3, ] ).astype("int64"), }, fetch_list=[k], ) np.testing.assert_allclose( out[0], np.array([[1, 1, 1], [0, 0, 0]]), rtol=1e-05 ) class TestStackAPI_ZeroDim(unittest.TestCase): def test_dygraph(self): paddle.disable_static() x1 = paddle.rand([]) x2 = paddle.rand([]) x1.stop_gradient = False x2.stop_gradient = False out = paddle.stack([x1, x2]) out.retain_grads() out.backward() self.assertEqual(out.shape, [2]) self.assertEqual(x1.grad.shape, []) self.assertEqual(x2.grad.shape, []) self.assertEqual(out.grad.shape, [2]) paddle.enable_static() if __name__ == '__main__': unittest.main()