# Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import struct import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core import paddle.static.amp as amp from paddle.fluid.op import Operator from paddle.fluid.tests.unittests.op_test import ( OpTest, OpTestTool, convert_float_to_uint16, convert_uint16_to_float, ) @unittest.skipIf( not core.supports_bfloat16(), 'place does not support BF16 evaluation' ) class TestSGDOpBF16(OpTest): def setUp(self): self.op_type = 'sgd' self.dtype = np.uint16 self.use_mkldnn = True self.conf() w = np.random.random((self.h, self.w)).astype('float32') w_bf16 = convert_float_to_uint16(w) g = np.random.random((self.h, self.w)).astype('float32') g_bf16 = convert_float_to_uint16(g) lr = np.array([0.1]).astype('float32') lr_bf16 = convert_float_to_uint16(lr) self.inputs = {'Param': w_bf16, 'Grad': g_bf16, 'LearningRate': lr_bf16} self.outputs = {'ParamOut': w - lr * g} self.attrs = {'use_mkldnn': self.use_mkldnn} def conf(self): self.h = 102 self.w = 105 def test_check_output(self): self.check_output_with_place(core.CPUPlace(), check_dygraph=False) @unittest.skipIf( not core.supports_bfloat16(), 'place does not support BF16 evaluation' ) class TestSGDOpBF16Case2(TestSGDOpBF16): def conf(self): self.h = 10 self.w = 64 class TestSparseSGDOpBF16(unittest.TestCase): @classmethod def setUpClass(cls): np.random.seed(12345) def ref_optimize(self, params, grad_rows, grad_array, lr_value): reference = np.copy(params) for index, id in enumerate(grad_rows): reference[id] = params[id] - lr_value * grad_array[index] return reference def check_output(self, actual_bf16, reference, atol=0, rtol=0.15e-2): actual_fp32 = convert_uint16_to_float(actual_bf16) np.testing.assert_allclose(actual_fp32, reference, atol=atol, rtol=rtol) def create_sparse_grad_var(self, scope, place, height, rows, row_numel): grad_selected_rows = scope.var('Grad').get_selected_rows() grad_selected_rows.set_height(height) grad_selected_rows.set_rows(rows) grad_array = np.random.random((len(rows), row_numel)).astype('float32') np_array_bf16 = convert_float_to_uint16(grad_array) grad_tensor = grad_selected_rows.get_tensor() grad_tensor.set(np_array_bf16, place) return grad_tensor, grad_array def create_dense_param_var(self, scope, place, height, width): param_tensor = scope.var('Param').get_tensor() param_array = np.random.random((height, width)).astype('float32') param_array_bf16 = convert_float_to_uint16(param_array) param_tensor.set(param_array_bf16, place) return param_tensor, param_array def create_sparse_param_var(self, scope, place, height, rows, row_numel): param_selected_rows = scope.var('Param').get_selected_rows() param_selected_rows.set_height(height) param_selected_rows.set_rows(rows) param_selected_rows.sync_index() param_array = np.random.random((len(rows), row_numel)).astype('float32') np_array_bf16 = convert_float_to_uint16(param_array) param_tensor = param_selected_rows.get_tensor() param_tensor.set(np_array_bf16, place) return param_tensor, param_array def create_dense_lr_var(self, scope, place): lr_tensor = scope.var('LearningRate').get_tensor() lr_value = np.random.uniform() lr_array = np.full((1), lr_value, np.float32) lr_array_bf16 = convert_float_to_uint16(lr_array) lr_tensor.set(lr_array_bf16, place) return lr_tensor, lr_value @unittest.skipIf( not core.supports_bfloat16(), 'place does not support BF16 evaluation' ) class TestSparseGradSGDOpBF16(TestSparseSGDOpBF16): def setUp(self): self.setup_params() def setup_params(self): self.grad_height = 10 self.grad_rows = [0, 4, 7] self.grad_row_numel = 12 def test_sparse_grad_sgd(self): scope = core.Scope() place = core.CPUPlace() _, grad_array = self.create_sparse_grad_var( scope, place, self.grad_height, self.grad_rows, self.grad_row_numel ) param_tensor, param_array = self.create_dense_param_var( scope, place, self.grad_height, self.grad_row_numel ) _, lr_value = self.create_dense_lr_var(scope, place) sgd_op = Operator( 'sgd', Param='Param', Grad='Grad', ParamOut='Param', LearningRate='LearningRate', use_mkldnn=True, ) sgd_op.run(scope, place) reference = self.ref_optimize( param_array, self.grad_rows, grad_array, lr_value ) output = np.array(param_tensor) self.check_output(output, reference, atol=5e-3, rtol=1e-1) @unittest.skipIf( not core.supports_bfloat16(), 'place does not support BF16 evaluation' ) class TestSparseGradSGDOpBF16Case2(TestSparseGradSGDOpBF16): def setup_params(self): self.grad_height = 14 self.grad_rows = [1, 4, 12, 7, 8] self.grad_row_numel = 16 class TestSparseGradSGDOpBF16Case3(TestSparseGradSGDOpBF16): def setup_params(self): self.grad_height = 10 self.grad_rows = [0, 4, 7] self.grad_row_numel = 120 @unittest.skipIf( not core.supports_bfloat16(), 'place does not support BF16 evaluation' ) class TestSparseGradParamSGDOpBF16(TestSparseSGDOpBF16): def setUp(self): self.setup_params() def setup_params(self): self.grad_height = 10 self.grad_rows = [0, 4, 7] self.grad_row_numel = 12 self.param_rows = [a for a in range(self.grad_height)] def test_sparse_param_grad_sgd(self): scope = core.Scope() place = core.CPUPlace() _, grad_array = self.create_sparse_grad_var( scope, place, self.grad_height, self.grad_rows, self.grad_row_numel ) param_tensor, param_array = self.create_sparse_param_var( scope, place, self.grad_height, self.param_rows, self.grad_row_numel ) _, lr_value = self.create_dense_lr_var(scope, place) sgd_op = Operator( 'sgd', Param='Param', Grad='Grad', ParamOut='Param', LearningRate='LearningRate', use_mkldnn=True, ) sgd_op.run(scope, place) reference = self.ref_optimize( param_array, self.grad_rows, grad_array, lr_value ) output = np.array(param_tensor) self.check_output(output, reference, atol=5e-3, rtol=1e-1) class TestSparseGradParamSGDOpBF16Case2(TestSparseGradParamSGDOpBF16): def setup_params(self): self.grad_height = 14 self.grad_rows = [1, 4, 12, 7, 8] self.grad_row_numel = 16 self.param_rows = [a for a in range(self.grad_height)] @OpTestTool.skip_if_not_cpu_bf16() class TestSGDOpBF16API(unittest.TestCase): @classmethod def setUpClass(cls): np.random.seed(12345) fluid.set_flags({'FLAGS_use_mkldnn': True}) def setUp(self): self.sample_count = 20 self.value = np.random.random() self.ids_shape = (32, 1) self.w_shape = (64, 16) self.y_shape = (32, 16) self.learning_rate = 0.1 self._set_initializer() def _fp322bf16(self, val: np.float32): return np.uint16(struct.unpack('> 16) def _bf162fp32(self, val: np.uint16): return np.float32(struct.unpack('