# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid.op import Operator def create_selected_rows_and_tensor( scope, place, height, row_num, embedding_size ): sr = scope.var("@selected_rows@").get_selected_rows() tensor = scope.var("grad").get_tensor() rows = np.random.random_integers( low=0, high=height - 1, size=[ row_num, ], ).astype('int64') sr_val = np.random.random(size=[row_num, embedding_size]).astype('float32') sr.set_height(height) sr.set_rows(rows) sr.get_tensor().set(sr_val, place) tensor_val = np.zeros(shape=[height, embedding_size], dtype='float32') for i in range(row_num): row = rows[i] tensor_val[row, :] = tensor_val[row, :] + sr_val[i, :] tensor.set(tensor_val, place) return tensor_val, sr_val class TestBase(unittest.TestCase): def setup( self, place, is_sparse, centered, size, row_num=None, epsilon=1e-6 ): np.random.seed(5) # fix seed self.scope = fluid.global_scope() self.place = place self.param_name = "param" self.param = np.random.random(size).astype("float32") self.mean_square_name = "mean_square" self.mean_square = np.random.uniform(low=1, high=2, size=size).astype( "float32" ) self.mean_grad_name = "mean_grad" self.mean_grad = np.random.random(size).astype("float32") self.lr_name = "lr" self.learning_rate = np.array([0.01]).astype("float32") self.grad_name = "grad" self.is_sparse = is_sparse if self.is_sparse: self.grad_sr_name = "@selected_rows@" self.grad, self.grad_sr = create_selected_rows_and_tensor( self.scope, place, size[0], row_num, size[1] ) else: self.grad = np.random.random(size).astype("float32") grad_tensor = self.scope.var(self.grad_name).get_tensor() grad_tensor.set(self.grad, place) self.moment_name = "moment" self.moment = np.random.uniform(low=0, high=1, size=size).astype( "float32" ) self.epsilon = epsilon self.decay = 0.9 self.momentum = 0.1 self.centered = centered self.ms_out = ( self.decay * self.mean_square + (1 - self.decay) * self.grad * self.grad ) if centered: self.mg_out = ( self.decay * self.mean_grad + (1 - self.decay) * self.grad ) self.moment_out = ( self.momentum * self.moment + self.learning_rate * self.grad / np.sqrt(self.ms_out - np.square(self.mg_out) + self.epsilon) ) else: self.moment_out = ( self.momentum * self.moment + self.learning_rate * self.grad / np.sqrt(self.ms_out + self.epsilon) ) self.param_out = self.param - self.moment_out # create and initialize Param Variable self.param_tensor = self.scope.var(self.param_name).get_tensor() self.param_tensor.set(self.param, place) self.mean_square_tensor = self.scope.var( self.mean_square_name ).get_tensor() self.mean_square_tensor.set(self.mean_square, place) lr = self.scope.var(self.lr_name).get_tensor() lr.set(self.learning_rate, place) self.moment_tensor = self.scope.var(self.moment_name).get_tensor() self.moment_tensor.set(self.moment, place) if self.centered: self.mean_grad_tensor = self.scope.var( self.mean_grad_name ).get_tensor() self.mean_grad_tensor.set(self.mean_grad, place) def check(self, actual_t, expect_t, place, out_name, atol=1e-5): np.testing.assert_allclose( actual_t, expect_t, rtol=1e-05, atol=atol, err_msg='Output (' + out_name + ') has diff at ' + str(place) + '\nExpect ' + str(expect_t) + '\n' + 'But Got' + str(actual_t), ) class TestRmspropOp(TestBase): def check_with_place( self, place, is_sparse, centered, size, row_num=None, epsilon=1e-6 ): self.setup(place, is_sparse, centered, size, row_num, epsilon) self.run_and_check() def run_and_check(self): grad_name = self.grad_sr_name if self.is_sparse else self.grad_name kwargs = { 'Param': self.param_name, 'Grad': grad_name, 'MeanSquare': self.mean_square_name, 'Moment': self.moment_name, 'LearningRate': self.lr_name, 'ParamOut': self.param_name, 'MeanSquareOut': self.mean_square_name, 'MomentOut': self.moment_name, 'epsilon': self.epsilon, 'decay': self.decay, 'momentum': self.momentum, 'centered': self.centered, } if self.centered: kwargs['MeanGrad'] = self.mean_grad_name kwargs['MeanGradOut'] = self.mean_grad_name rmsprop_op = Operator('rmsprop', **kwargs) atol = 1e-6 rmsprop_op.run(self.scope, self.place) self.check( np.array(self.mean_square_tensor), self.ms_out, self.place, self.mean_square_name, atol=atol, ) self.check( np.array(self.moment_tensor), self.moment_out, self.place, self.moment_name, atol=atol, ) self.check( np.array(self.param_tensor), self.param_out, self.place, self.param_name, atol=atol, ) if self.centered: self.check( np.array(self.mean_grad_tensor), self.mg_out, self.place, self.mean_grad_name, ) def test_rmsprop(self): places = [core.CPUPlace()] if core.is_compiled_with_cuda(): places.append(core.CUDAPlace(0)) size = (128, 320) for place in places: for centered in [False, True]: with fluid.scope_guard(core.Scope()): self.check_with_place( place, is_sparse=False, centered=centered, size=size ) with fluid.scope_guard(core.Scope()): self.check_with_place( place, is_sparse=True, centered=centered, row_num=512, size=size, ) with fluid.scope_guard(core.Scope()): self.check_with_place( place, is_sparse=True, centered=centered, row_num=60, size=size, ) class TestRMSPropV2(unittest.TestCase): def test_rmsprop_dygraph(self): paddle.disable_static() value = np.arange(26).reshape(2, 13).astype("float32") a = paddle.to_tensor(value) linear = paddle.nn.Linear(13, 5) # This can be any optimizer supported by dygraph. adam = paddle.optimizer.RMSProp( learning_rate=0.01, parameters=linear.parameters(), weight_decay=0.01, ) out = linear(a) out.backward() adam.step() adam.clear_gradients() def test_rmsprop(self): paddle.enable_static() place = fluid.CPUPlace() main = fluid.Program() with fluid.program_guard(main): x = paddle.static.data(name='x', shape=[-1, 13], dtype='float32') y = paddle.static.data(name='y', shape=[-1, 1], dtype='float32') y_predict = paddle.static.nn.fc(x, size=1) cost = paddle.nn.functional.square_error_cost( input=y_predict, label=y ) avg_cost = paddle.mean(cost) rms_optimizer = paddle.optimizer.RMSProp(learning_rate=0.1) rms_optimizer.minimize(avg_cost) fetch_list = [avg_cost] train_reader = paddle.batch( paddle.dataset.uci_housing.train(), batch_size=1 ) feeder = fluid.DataFeeder(place=place, feed_list=[x, y]) exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for data in train_reader(): exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list) def test_raise_error(self): self.assertRaises(ValueError, paddle.optimizer.RMSProp, None) self.assertRaises( ValueError, paddle.optimizer.RMSProp, learning_rate=0.1, rho=None ) self.assertRaises( ValueError, paddle.optimizer.RMSProp, learning_rate=0.1, epsilon=None, ) self.assertRaises( ValueError, paddle.optimizer.RMSProp, learning_rate=0.1, momentum=None, ) def test_rmsprop_op_invalid_input(self): paddle.disable_static() linear = paddle.nn.Linear(10, 10) with self.assertRaises(ValueError): adam = paddle.optimizer.RMSProp( 0.1, epsilon=-1, parameters=linear.parameters() ) with self.assertRaises(ValueError): adam = paddle.optimizer.RMSProp( 0.1, momentum=-1, parameters=linear.parameters() ) with self.assertRaises(ValueError): adam = paddle.optimizer.RMSProp( 0.1, rho=-1, parameters=linear.parameters() ) class TestRMSPropV2Group(TestRMSPropV2): def test_rmsprop_dygraph(self): paddle.disable_static() value = np.arange(26).reshape(2, 13).astype("float32") a = paddle.to_tensor(value) linear_1 = paddle.nn.Linear(13, 5) linear_2 = paddle.nn.Linear(5, 3) # This can be any optimizer supported by dygraph. adam = paddle.optimizer.RMSProp( learning_rate=0.01, parameters=[ {'params': linear_1.parameters()}, {'params': linear_2.parameters(), 'weight_decay': 0.001}, ], weight_decay=0.01, ) out = linear_1(a) out = linear_2(out) out.backward() adam.step() adam.clear_gradients() if __name__ == "__main__": paddle.enable_static() unittest.main()