# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest import paddle import paddle.fluid as fluid import paddle.fluid.core as core from paddle.fluid import Program, program_guard class DotOp(OpTest): def setUp(self): self.op_type = "dot" self.python_api = paddle.dot self.init_dtype() self.init_input_output() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), } self.outputs = {'Out': self.out} self.attrs = {} def test_check_output(self): self.check_output(check_eager=True) def test_check_grad_normal(self): if core.is_compiled_with_rocm(): self.check_grad( ['X', 'Y'], 'Out', user_defined_grads=[self.inputs['Y'], self.inputs['X']], check_eager=True, ) else: self.check_grad(['X', 'Y'], 'Out', check_eager=True) def test_check_grad_ingore_x(self): if core.is_compiled_with_rocm(): self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), user_defined_grads=[self.inputs['X']], check_eager=True, ) else: self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), check_eager=True ) def test_check_grad_ingore_y(self): if core.is_compiled_with_rocm(): self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), user_defined_grads=[self.inputs['Y']], check_eager=True, ) else: self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), check_eager=True ) def init_input_output(self): self.x = np.random.uniform(0.1, 1, [121]).astype(self.dtype) self.y = np.random.uniform(1, 3, [121]).astype(self.dtype) self.out = np.dot(self.x, self.y) def init_dtype(self): self.dtype = np.float64 class DotOpBatch(DotOp): def init_input_output(self): self.x = ( np.random.uniform(0.1, 1, [132]) .astype(self.dtype) .reshape([11, 12]) ) self.y = ( np.random.uniform(1, 3, [132]).astype(self.dtype).reshape([11, 12]) ) self.out = np.sum(self.x * self.y, axis=1).reshape([11, 1]) def test_check_grad_normal(self): self.check_grad(['X', 'Y'], 'Out') def test_check_grad_ingore_x(self): self.check_grad(['Y'], 'Out', no_grad_set=set("X")) def test_check_grad_ingore_y(self): self.check_grad(['X'], 'Out', no_grad_set=set('Y')) class TestDotOpError(unittest.TestCase): def test_errors(self): with program_guard(Program(), Program()): # the input dtype of elementwise_mul must be float16 or float32 or float64 or int32 or int64 # float16 only can be set on GPU place x1 = paddle.static.data(name='x1', shape=[-1, 120], dtype="uint8") y1 = paddle.static.data(name='y1', shape=[-1, 120], dtype="uint8") self.assertRaises(Exception, paddle.dot, x1, y1) x2 = paddle.static.data( name='x2', shape=[-1, 2, 3], dtype="float32" ) y2 = paddle.static.data( name='y2', shape=[-1, 2, 3], dtype="float32" ) self.assertRaises(Exception, paddle.dot, x2, y2) x3 = paddle.static.data(name='x3', shape=[-1, 3], dtype="float32") y3 = paddle.static.data( name='y3', shape=[-1, 2, 3], dtype="float32" ) self.assertRaises(Exception, paddle.dot, x2, y3) class TestDygraph(unittest.TestCase): def test_dygraph(self): with fluid.dygraph.guard(): x1 = fluid.dygraph.to_variable(np.array([1, 3]).astype(np.float32)) y1 = fluid.dygraph.to_variable(np.array([2, 5]).astype(np.float32)) np.testing.assert_allclose( paddle.dot(x1, y1).numpy(), np.array([17]), rtol=1e-05 ) x1 = fluid.dygraph.to_variable( np.array([[1, 3], [3, 5]]).astype(np.float32) ) y1 = fluid.dygraph.to_variable( np.array([[2, 5], [6, 8]]).astype(np.float32) ) np.testing.assert_array_equal( paddle.dot(x1, y1).numpy(), np.array([[17], [58]]) ) class TestComplexDotOp(OpTest): def setUp(self): self.op_type = "dot" self.python_api = paddle.dot self.init_base_dtype() self.init_input_output() self.init_grad_input_output() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), } self.outputs = {'Out': self.out} def init_base_dtype(self): self.dtype = np.float64 def init_input_output(self): self.x = np.random.random(100).astype( self.dtype ) + 1j * np.random.random(100).astype(self.dtype) self.y = np.random.random(100).astype( self.dtype ) + 1j * np.random.random(100).astype(self.dtype) self.out = np.dot(self.x, self.y) def init_grad_input_output(self): self.grad_out = np.ones(1, self.dtype) + 1j * np.ones(1, self.dtype) self.grad_x = self.grad_out * np.conj(self.y) self.grad_y = self.grad_out * np.conj(self.x) def test_check_output(self): self.check_output(check_eager=True) def test_check_grad_normal(self): self.check_grad( ['X', 'Y'], 'Out', user_defined_grads=[self.grad_x, self.grad_y], user_defined_grad_outputs=[self.grad_out], check_eager=True, ) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), user_defined_grads=[self.grad_y], user_defined_grad_outputs=[self.grad_out], check_eager=True, ) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), user_defined_grads=[self.grad_x], user_defined_grad_outputs=[self.grad_out], check_eager=True, ) class TestComplexDotOp2D(OpTest): def setUp(self): self.op_type = "dot" self.init_base_dtype() self.init_input_output() self.init_grad_input_output() self.inputs = { 'X': OpTest.np_dtype_to_fluid_dtype(self.x), 'Y': OpTest.np_dtype_to_fluid_dtype(self.y), } self.outputs = {'Out': self.out} def init_base_dtype(self): self.dtype = np.float64 def init_input_output(self): self.x = np.random.random((2, 100)).astype( self.dtype ) + 1j * np.random.random((2, 100)).astype(self.dtype) self.y = np.random.random((2, 100)).astype( self.dtype ) + 1j * np.random.random((2, 100)).astype(self.dtype) self.out = np.diag(np.dot(self.x, self.y.T)).reshape(-1, 1) def init_grad_input_output(self): self.grad_out = np.ones((2, 1), self.dtype) + 1j * np.ones( (2, 1), self.dtype ) self.grad_x = self._get_grad(self.grad_out, self.y) self.grad_y = self._get_grad(self.grad_out, self.x) def _get_grad(self, grad_out, input): grad = np.empty((0, input.shape[1])) for i in range(grad_out.shape[0]): grad = np.append(grad, [grad_out[i] * np.conj(input[i])], axis=0) return grad def test_check_output(self): self.check_output() def test_check_grad_normal(self): self.check_grad( ['X', 'Y'], 'Out', user_defined_grads=[self.grad_x, self.grad_y], user_defined_grad_outputs=[self.grad_out], ) def test_check_grad_ingore_x(self): self.check_grad( ['Y'], 'Out', no_grad_set=set("X"), user_defined_grads=[self.grad_y], user_defined_grad_outputs=[self.grad_out], ) def test_check_grad_ingore_y(self): self.check_grad( ['X'], 'Out', no_grad_set=set('Y'), user_defined_grads=[self.grad_x], user_defined_grad_outputs=[self.grad_out], ) if __name__ == '__main__': paddle.enable_static() unittest.main()