// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/framework/ir/multihead_matmul_fuse_pass.h" #include #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_version_registry.h" namespace paddle { namespace framework { class Scope; } // namespace framework } // namespace paddle namespace paddle { namespace framework { namespace ir { namespace patterns { static void ReplaceOutputVar(Node* op, Node* old_var, Node* new_var) { if (op->IsOp() && op->Op()) { new_var->inputs.push_back(op); for (size_t i = 0; i < op->outputs.size(); ++i) { if (op->outputs[i] == old_var) { op->outputs[i] = new_var; op->Op()->RenameOutput(old_var->Name(), new_var->Name()); } } } } static int BuildFusion(Graph* graph, const std::string& name_scope) { GraphPatternDetector gpd; auto* pattern = gpd.mutable_pattern(); // Create pattern. MultiHeadMatmulPattern multihead_pattern(pattern, name_scope); multihead_pattern(); // Create New OpDesc auto fuse_creater = [&](Node* input0, Node* mul0, Node* mul1, Node* mul2, Node* mul0_out, Node* mul1_out, Node* mul2_out, Node* eltadd0_b, Node* eltadd1_b, Node* eltadd2_b, Node* eltadd_qk_b, Node* reshape2, Node* reshape2_qkv_out, Node* scale, Node* scale_out) { auto scale_attr = BOOST_GET_CONST(float, scale->Op()->GetAttr("scale")); // auto scale_bias = BOOST_GET_CONST(float, scale->Op()->GetAttr("bias")); // bool after_scale = // BOOST_GET_CONST(bool, scale->Op()->GetAttr("bias_after_scale")); // create multihead OpDesc multihead_op_desc(mul0->Op()->Block()); // create tmp tensor VarDesc k_var_desc(*mul1_out->Var()); k_var_desc.SetName("K" + mul1_out->Name()); auto* k_var_node = graph->CreateVarNode(&k_var_desc); VarDesc q_var_desc(*mul0_out->Var()); q_var_desc.SetName("Q" + mul0_out->Name()); auto* q_var_node = graph->CreateVarNode(&q_var_desc); VarDesc v_var_desc(*mul2_out->Var()); v_var_desc.SetName("V" + mul2_out->Name()); auto* v_var_node = graph->CreateVarNode(&v_var_desc); auto reshape_desc = reshape2->Op(); int head_number = BOOST_GET_CONST(std::vector, reshape_desc->GetAttr("shape")).at(2); ReplaceOutputVar(mul0, mul0_out, q_var_node); ReplaceOutputVar(mul1, mul1_out, k_var_node); ReplaceOutputVar(mul2, mul2_out, v_var_node); multihead_op_desc.SetType("multihead_matmul"); multihead_op_desc.SetInput("Q", {q_var_node->Name()}); multihead_op_desc.SetInput("K", {k_var_node->Name()}); multihead_op_desc.SetInput("V", {v_var_node->Name()}); multihead_op_desc.SetInput("BiasQ", {eltadd0_b->Name()}); multihead_op_desc.SetInput("BiasK", {eltadd1_b->Name()}); multihead_op_desc.SetInput("BiasV", {eltadd2_b->Name()}); multihead_op_desc.SetInput("BiasQK", {eltadd_qk_b->Name()}); multihead_op_desc.SetOutput("Out", {reshape2_qkv_out->Name()}); multihead_op_desc.SetAttr("alpha", scale_attr); multihead_op_desc.SetAttr("head_number", head_number); auto* multihead = graph->CreateOpNode(&multihead_op_desc); IR_NODE_LINK_TO(q_var_node, multihead); IR_NODE_LINK_TO(k_var_node, multihead); IR_NODE_LINK_TO(v_var_node, multihead); IR_NODE_LINK_TO(eltadd0_b, multihead); IR_NODE_LINK_TO(eltadd1_b, multihead); IR_NODE_LINK_TO(eltadd2_b, multihead); IR_NODE_LINK_TO(eltadd_qk_b, multihead); IR_NODE_LINK_TO(multihead, reshape2_qkv_out); }; int fusion_count{0}; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { // GET_IR_NODE_FROM_SUBGRAPH(dropout_out, dropout_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(input0, input0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul0, mul0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul0_out, mul0_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul0_w, mul0_w, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_0, reshape2_0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_0_out, reshape2_0_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_0, transpose2_0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_0_out, transpose2_0_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(scale, scale, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(scale_out, scale_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul1, mul1, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul1_out, mul1_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul1_w, mul1_w, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_1, reshape2_1, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_1_out, reshape2_1_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_1, transpose2_1, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_1_out, transpose2_1_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul2, mul2, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul2_out, mul2_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul2_w, mul2_w, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_2, reshape2_2, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_2_out, reshape2_2_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_2, transpose2_2, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_2_out, transpose2_2_out, multihead_pattern); // nodes need be removed GET_IR_NODE_FROM_SUBGRAPH(eltadd0, eltadd0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd0_b, eltadd0_b, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd0_out, eltadd0_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd1, eltadd1, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd1_b, eltadd1_b, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd1_out, eltadd1_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd2, eltadd2, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd2_b, eltadd2_b, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd2_out, eltadd2_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_qk, matmul_qk, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_qk_out, matmul_qk_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk, eltadd_qk, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_b, eltadd_qk_b, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_out, eltadd_qk_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(softmax_qk, softmax_qk, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(softmax_qk_out, softmax_qk_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv, matmul_qkv, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv_out, matmul_qkv_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv, reshape2_qkv, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv_out, reshape2_qkv_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_qkv, transpose2_qkv, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_qkv_out, transpose2_qkv_out, multihead_pattern); fuse_creater(input0, mul0, mul1, mul2, mul0_out, mul1_out, mul2_out, eltadd0_b, eltadd1_b, eltadd2_b, eltadd_qk_b, reshape2_0, reshape2_qkv_out, scale, scale_out); std::unordered_set marked_nodes( {eltadd0, eltadd1, eltadd2, eltadd0_out, eltadd1_out, eltadd2_out, reshape2_0, reshape2_1, reshape2_2, reshape2_0_out, reshape2_1_out, reshape2_2_out, transpose2_0, transpose2_1, transpose2_2, transpose2_0_out, transpose2_1_out, transpose2_2_out, matmul_qk, matmul_qk_out, eltadd_qk, eltadd_qk_out, softmax_qk, softmax_qk_out, // dropout_qk, dropout_qk_out, transpose2_qkv, transpose2_qkv_out, matmul_qkv, matmul_qkv_out, mul0_out, mul1_out, mul2_out, reshape2_qkv, scale}); // Remove unneeded nodes. GraphSafeRemoveNodes(graph, marked_nodes); ++fusion_count; }; gpd(graph, handler); return fusion_count; } PDNode* MultiHeadMatmulPattern::operator()() { auto* input0 = pattern->NewNode(input0_repr()); input0->assert_is_op_input("mul"); // First path with scale auto* mul0 = pattern->NewNode(mul0_repr())->assert_is_op("mul"); auto* mul0_w_var = pattern->NewNode(mul0_w_repr()) ->AsInput() ->assert_is_op_input("mul", "Y"); auto* mul0_out_var = pattern->NewNode(mul0_out_repr())->assert_is_op_output("mul"); decltype(mul0) eltadd0; decltype(mul0) eltadd0_b_var; decltype(mul0) eltadd0_out_var; mul0_out_var->AsIntermediate()->assert_is_op_input("elementwise_add"); eltadd0 = pattern->NewNode(eltadd0_repr())->assert_is_op("elementwise_add"); eltadd0_b_var = pattern->NewNode(eltadd0_b_repr()) ->AsInput() ->assert_is_op_input("elementwise_add", "Y"); eltadd0_out_var = pattern->NewNode(eltadd0_out_repr()) ->assert_is_op_output("elementwise_add"); eltadd0_out_var->AsIntermediate()->assert_is_op_input("reshape2"); auto* reshape2_0 = pattern->NewNode(reshape2_0_repr())->assert_is_op("reshape2"); auto* reshape2_0_out_var = pattern->NewNode(reshape2_0_out_repr())->assert_is_op_output("reshape2"); reshape2_0_out_var->AsIntermediate()->assert_is_op_input("transpose2"); auto* transpose2_0 = pattern->NewNode(transpose2_0_repr())->assert_is_op("transpose2"); auto* transpose2_0_out_var = pattern->NewNode(transpose2_0_out_repr()) ->assert_is_op_output("transpose2"); transpose2_0_out_var->AsIntermediate()->assert_is_op_input("scale"); auto* scale = pattern->NewNode(scale_repr())->assert_is_op("scale"); auto* scale_out_var = pattern->NewNode(scale_out_repr())->assert_is_op_output("scale"); scale_out_var->AsIntermediate()->assert_is_op_input("matmul"); auto* matmul_qk = pattern->NewNode(matmul_qk_repr())->assert_is_op("matmul"); auto* matmul_qk_out_var = pattern->NewNode(matmul_qk_out_repr())->assert_is_op_output("matmul"); matmul_qk_out_var->AsIntermediate()->assert_is_op_input("elementwise_add"); auto* eltadd_qk = pattern->NewNode(eltadd_qk_repr())->assert_is_op("elementwise_add"); auto* eltadd_qk_b_var = pattern->NewNode(eltadd_qk_b_repr()) ->AsInput() ->assert_is_op_input("elementwise_add", "Y"); auto* eltadd_qk_out_var = pattern->NewNode(eltadd_qk_out_repr()) ->assert_is_op_output("elementwise_add"); eltadd_qk_out_var->AsIntermediate()->assert_is_op_input("softmax"); auto* softmax_qk = pattern->NewNode(softmax_qk_repr())->assert_is_op("softmax"); auto* softmax_qk_out_var = pattern->NewNode(softmax_qk_out_repr())->assert_is_op_output("softmax"); softmax_qk_out_var->AsIntermediate()->assert_is_op_input("matmul"); auto* matmul_qkv = pattern->NewNode(matmul_qkv_repr())->assert_is_op("matmul"); auto* matmul_qkv_out_var = pattern->NewNode(matmul_qkv_out_repr())->assert_is_op_output("matmul"); matmul_qkv_out_var->AsIntermediate()->assert_is_op_input("transpose2"); auto* transpose2_qkv = pattern->NewNode(transpose2_qkv_repr())->assert_is_op("transpose2"); auto* transpose2_qkv_out_var = pattern->NewNode(transpose2_qkv_out_repr()) ->assert_is_op_output("transpose2"); transpose2_qkv_out_var->AsIntermediate()->assert_is_op_input("reshape2"); auto* reshape2_qkv = pattern->NewNode(reshape2_qkv_repr())->assert_is_op("reshape2"); auto* reshape2_qkv_out_var = pattern->NewNode(reshape2_qkv_out_repr()) ->assert_is_op_output("reshape2"); reshape2_qkv_out_var->assert_is_op_input("mul"); // Second path to matmul auto* mul1 = pattern->NewNode(mul1_repr())->assert_is_op("mul"); auto* mul1_w_var = pattern->NewNode(mul1_w_repr()) ->AsInput() ->assert_is_op_input("mul", "Y"); auto* mul1_out_var = pattern->NewNode(mul1_out_repr())->assert_is_op_output("mul"); decltype(mul1) eltadd1; decltype(mul1) eltadd1_b_var; decltype(mul1) eltadd1_out_var; mul1_out_var->AsIntermediate()->assert_is_op_input("elementwise_add"); eltadd1 = pattern->NewNode(eltadd1_repr())->assert_is_op("elementwise_add"); eltadd1_b_var = pattern->NewNode(eltadd1_b_repr()) ->AsInput() ->assert_is_op_input("elementwise_add", "Y"); eltadd1_out_var = pattern->NewNode(eltadd1_out_repr()) ->assert_is_op_output("elementwise_add"); eltadd1_out_var->AsIntermediate()->assert_is_op_input("reshape2"); auto* reshape2_1 = pattern->NewNode(reshape2_1_repr())->assert_is_op("reshape2"); auto* reshape2_1_out_var = pattern->NewNode(reshape2_1_out_repr())->assert_is_op_output("reshape2"); reshape2_1_out_var->AsIntermediate()->assert_is_op_input("transpose2"); auto* transpose2_1 = pattern->NewNode(transpose2_1_repr())->assert_is_op("transpose2"); auto* transpose2_1_out_var = pattern->NewNode(transpose2_1_out_repr()) ->assert_is_op_output("transpose2"); transpose2_1_out_var->AsIntermediate()->assert_is_op_input( "matmul"); // link to matmul qk // Third path to matmul auto* mul2 = pattern->NewNode(mul2_repr())->assert_is_op("mul"); auto* mul2_w_var = pattern->NewNode(mul2_w_repr()) ->AsInput() ->assert_is_op_input("mul", "Y"); auto* mul2_out_var = pattern->NewNode(mul2_out_repr())->assert_is_op_output("mul"); decltype(mul2) eltadd2; decltype(mul2) eltadd2_b_var; decltype(mul2) eltadd2_out_var; mul2_out_var->AsIntermediate()->assert_is_op_input("elementwise_add"); eltadd2 = pattern->NewNode(eltadd2_repr())->assert_is_op("elementwise_add"); eltadd2_b_var = pattern->NewNode(eltadd2_b_repr()) ->AsInput() ->assert_is_op_input("elementwise_add", "Y"); eltadd2_out_var = pattern->NewNode(eltadd2_out_repr()) ->assert_is_op_output("elementwise_add"); eltadd2_out_var->AsIntermediate()->assert_is_op_input("reshape2"); auto* reshape2_2 = pattern->NewNode(reshape2_2_repr())->assert_is_op("reshape2"); auto* reshape2_2_out_var = pattern->NewNode(reshape2_2_out_repr())->assert_is_op_output("reshape2"); reshape2_2_out_var->AsIntermediate()->assert_is_op_input("transpose2"); auto* transpose2_2 = pattern->NewNode(transpose2_2_repr())->assert_is_op("transpose2"); auto* transpose2_2_out_var = pattern->NewNode(transpose2_2_out_repr()) ->assert_is_op_output("transpose2"); transpose2_2_out_var->AsIntermediate()->assert_is_op_input( "matmul"); // link to matmul qkv // Q path mul0->LinksFrom({input0, mul0_w_var}).LinksTo({mul0_out_var}); eltadd0->LinksFrom({mul0_out_var, eltadd0_b_var}).LinksTo({eltadd0_out_var}); reshape2_0->LinksFrom({eltadd0_out_var}).LinksTo({reshape2_0_out_var}); transpose2_0->LinksFrom({reshape2_0_out_var}).LinksTo({transpose2_0_out_var}); scale->LinksFrom({transpose2_0_out_var}).LinksTo({scale_out_var}); // K path mul1->LinksFrom({input0, mul1_w_var}).LinksTo({mul1_out_var}); eltadd1->LinksFrom({mul1_out_var, eltadd1_b_var}).LinksTo({eltadd1_out_var}); reshape2_1->LinksFrom({eltadd1_out_var}).LinksTo({reshape2_1_out_var}); transpose2_1->LinksFrom({reshape2_1_out_var}).LinksTo({transpose2_1_out_var}); // compute q*k matmul_qk->LinksFrom({scale_out_var, transpose2_1_out_var}) .LinksTo({matmul_qk_out_var}); eltadd_qk->LinksFrom({matmul_qk_out_var, eltadd_qk_b_var}) .LinksTo({eltadd_qk_out_var}); softmax_qk->LinksFrom({eltadd_qk_out_var}).LinksTo({softmax_qk_out_var}); // V path mul2->LinksFrom({input0, mul2_w_var}).LinksTo({mul2_out_var}); eltadd2->LinksFrom({mul2_out_var, eltadd2_b_var}).LinksTo({eltadd2_out_var}); reshape2_2->LinksFrom({eltadd2_out_var}).LinksTo({reshape2_2_out_var}); transpose2_2->LinksFrom({reshape2_2_out_var}).LinksTo({transpose2_2_out_var}); // compute q*k*v matmul_qkv->LinksFrom({softmax_qk_out_var, transpose2_2_out_var}) .LinksTo({matmul_qkv_out_var}); transpose2_qkv->LinksFrom({matmul_qkv_out_var}) .LinksTo({transpose2_qkv_out_var}); reshape2_qkv->LinksFrom({transpose2_qkv_out_var}) .LinksTo({reshape2_qkv_out_var}); return transpose2_2_out_var; } PDNode* MultiHeadMatmulV3Pattern::operator()() { // Add mul op to support huggingface onnx model convertsion by x2paddle std::unordered_set matmul_ops{"mul", "matmul", "matmul_v2"}; auto* input0 = pattern->NewNode(input0_repr()); input0->assert_is_ops_input(matmul_ops); // First path with scale auto* mul0 = pattern->NewNode(mul0_repr())->assert_is_ops(matmul_ops); auto* mul0_w_var = pattern->NewNode(mul0_w_repr()) ->AsInput() ->assert_is_ops_input(matmul_ops, "Y"); auto* mul0_out_var = pattern->NewNode(mul0_out_repr())->assert_is_ops_output(matmul_ops); decltype(mul0) eltadd0; decltype(mul0) eltadd0_b_var; decltype(mul0) eltadd0_out_var; mul0_out_var->AsIntermediate()->assert_is_op_input("elementwise_add"); eltadd0 = pattern->NewNode(eltadd0_repr())->assert_is_op("elementwise_add"); eltadd0_b_var = pattern->NewNode(eltadd0_b_repr()) ->AsInput() ->assert_is_op_input("elementwise_add", "Y"); eltadd0_out_var = pattern->NewNode(eltadd0_out_repr()) ->assert_is_op_output("elementwise_add"); eltadd0_out_var->AsIntermediate()->assert_is_op_input("reshape2"); auto* reshape2_0 = pattern->NewNode(reshape2_0_repr())->assert_is_op("reshape2"); auto* reshape2_0_out_var = pattern->NewNode(reshape2_0_out_repr())->assert_is_op_output("reshape2"); reshape2_0_out_var->AsIntermediate()->assert_is_op_input("transpose2"); auto* transpose2_0 = pattern->NewNode(transpose2_0_repr())->assert_is_op("transpose2"); auto* transpose2_0_out_var = pattern->NewNode(transpose2_0_out_repr()) ->assert_is_op_output("transpose2"); transpose2_0_out_var->AsIntermediate()->assert_is_ops_input(matmul_ops, "X"); auto* matmul_qk = pattern->NewNode(matmul_qk_repr())->assert_is_ops(matmul_ops); auto* matmul_qk_out_var = pattern->NewNode(matmul_qk_out_repr())->assert_is_ops_output(matmul_ops); matmul_qk_out_var->AsIntermediate()->assert_is_op_input("elementwise_add"); auto* eltadd_qk = pattern->NewNode(eltadd_qk_repr())->assert_is_op("elementwise_add"); auto* eltadd_qk_b_var = pattern->NewNode(eltadd_qk_b_repr()) ->AsInput() ->assert_is_op_input("elementwise_add", "Y"); auto* eltadd_qk_out_var = pattern->NewNode(eltadd_qk_out_repr()) ->assert_is_op_output("elementwise_add"); eltadd_qk_out_var->AsIntermediate()->assert_is_op_input("softmax"); auto* softmax_qk = pattern->NewNode(softmax_qk_repr())->assert_is_op("softmax"); auto* softmax_qk_out_var = pattern->NewNode(softmax_qk_out_repr())->assert_is_op_output("softmax"); softmax_qk_out_var->AsIntermediate()->assert_is_ops_input(matmul_ops); auto* matmul_qkv = pattern->NewNode(matmul_qkv_repr())->assert_is_ops(matmul_ops); auto* matmul_qkv_out_var = pattern->NewNode(matmul_qkv_out_repr())->assert_is_ops_output(matmul_ops); matmul_qkv_out_var->AsIntermediate()->assert_is_op_input("transpose2"); auto* transpose2_qkv = pattern->NewNode(transpose2_qkv_repr())->assert_is_op("transpose2"); auto* transpose2_qkv_out_var = pattern->NewNode(transpose2_qkv_out_repr()) ->assert_is_op_output("transpose2"); transpose2_qkv_out_var->AsIntermediate()->assert_is_op_input("reshape2"); auto* reshape2_qkv = pattern->NewNode(reshape2_qkv_repr())->assert_is_op("reshape2"); auto* reshape2_qkv_out_var = pattern->NewNode(reshape2_qkv_out_repr()) ->assert_is_op_output("reshape2"); reshape2_qkv_out_var->assert_is_ops_input(matmul_ops); // Second path to matmul auto* mul1 = pattern->NewNode(mul1_repr())->assert_is_ops(matmul_ops); auto* mul1_w_var = pattern->NewNode(mul1_w_repr()) ->AsInput() ->assert_is_ops_input(matmul_ops, "Y"); auto* mul1_out_var = pattern->NewNode(mul1_out_repr())->assert_is_ops_output(matmul_ops); decltype(mul1) eltadd1; decltype(mul1) eltadd1_b_var; decltype(mul1) eltadd1_out_var; mul1_out_var->AsIntermediate()->assert_is_op_input("elementwise_add"); eltadd1 = pattern->NewNode(eltadd1_repr())->assert_is_op("elementwise_add"); eltadd1_b_var = pattern->NewNode(eltadd1_b_repr()) ->AsInput() ->assert_is_op_input("elementwise_add", "Y"); eltadd1_out_var = pattern->NewNode(eltadd1_out_repr()) ->assert_is_op_output("elementwise_add"); eltadd1_out_var->AsIntermediate()->assert_is_op_input("reshape2"); auto* reshape2_1 = pattern->NewNode(reshape2_1_repr())->assert_is_op("reshape2"); auto* reshape2_1_out_var = pattern->NewNode(reshape2_1_out_repr())->assert_is_op_output("reshape2"); reshape2_1_out_var->AsIntermediate()->assert_is_op_input("transpose2"); auto* transpose2_1 = pattern->NewNode(transpose2_1_repr())->assert_is_op("transpose2"); auto* transpose2_1_out_var = pattern->NewNode(transpose2_1_out_repr()) ->assert_is_op_output("transpose2"); transpose2_1_out_var->AsIntermediate()->assert_is_ops_input( matmul_ops, "Y"); // link to matmul qk // Third path to matmul auto* mul2 = pattern->NewNode(mul2_repr())->assert_is_ops(matmul_ops); auto* mul2_w_var = pattern->NewNode(mul2_w_repr()) ->AsInput() ->assert_is_ops_input(matmul_ops, "Y"); auto* mul2_out_var = pattern->NewNode(mul2_out_repr())->assert_is_ops_output(matmul_ops); decltype(mul2) eltadd2; decltype(mul2) eltadd2_b_var; decltype(mul2) eltadd2_out_var; mul2_out_var->AsIntermediate()->assert_is_op_input("elementwise_add"); eltadd2 = pattern->NewNode(eltadd2_repr())->assert_is_op("elementwise_add"); eltadd2_b_var = pattern->NewNode(eltadd2_b_repr()) ->AsInput() ->assert_is_op_input("elementwise_add", "Y"); eltadd2_out_var = pattern->NewNode(eltadd2_out_repr()) ->assert_is_op_output("elementwise_add"); eltadd2_out_var->AsIntermediate()->assert_is_op_input("reshape2"); auto* reshape2_2 = pattern->NewNode(reshape2_2_repr())->assert_is_op("reshape2"); auto* reshape2_2_out_var = pattern->NewNode(reshape2_2_out_repr())->assert_is_op_output("reshape2"); reshape2_2_out_var->AsIntermediate()->assert_is_op_input("transpose2"); auto* transpose2_2 = pattern->NewNode(transpose2_2_repr())->assert_is_op("transpose2"); auto* transpose2_2_out_var = pattern->NewNode(transpose2_2_out_repr()) ->assert_is_op_output("transpose2"); transpose2_2_out_var->AsIntermediate()->assert_is_ops_input( matmul_ops); // link to matmul qkv // Q path mul0->LinksFrom({input0, mul0_w_var}).LinksTo({mul0_out_var}); eltadd0->LinksFrom({mul0_out_var, eltadd0_b_var}).LinksTo({eltadd0_out_var}); reshape2_0->LinksFrom({eltadd0_out_var}).LinksTo({reshape2_0_out_var}); transpose2_0->LinksFrom({reshape2_0_out_var}).LinksTo({transpose2_0_out_var}); // K path mul1->LinksFrom({input0, mul1_w_var}).LinksTo({mul1_out_var}); eltadd1->LinksFrom({mul1_out_var, eltadd1_b_var}).LinksTo({eltadd1_out_var}); reshape2_1->LinksFrom({eltadd1_out_var}).LinksTo({reshape2_1_out_var}); transpose2_1->LinksFrom({reshape2_1_out_var}).LinksTo({transpose2_1_out_var}); // compute q*k matmul_qk->LinksFrom({transpose2_0_out_var, transpose2_1_out_var}) .LinksTo({matmul_qk_out_var}); eltadd_qk->LinksFrom({matmul_qk_out_var, eltadd_qk_b_var}) .LinksTo({eltadd_qk_out_var}); softmax_qk->LinksFrom({eltadd_qk_out_var}).LinksTo({softmax_qk_out_var}); // V path mul2->LinksFrom({input0, mul2_w_var}).LinksTo({mul2_out_var}); eltadd2->LinksFrom({mul2_out_var, eltadd2_b_var}).LinksTo({eltadd2_out_var}); reshape2_2->LinksFrom({eltadd2_out_var}).LinksTo({reshape2_2_out_var}); transpose2_2->LinksFrom({reshape2_2_out_var}).LinksTo({transpose2_2_out_var}); // compute q*k*v matmul_qkv->LinksFrom({softmax_qk_out_var, transpose2_2_out_var}) .LinksTo({matmul_qkv_out_var}); transpose2_qkv->LinksFrom({matmul_qkv_out_var}) .LinksTo({transpose2_qkv_out_var}); reshape2_qkv->LinksFrom({transpose2_qkv_out_var}) .LinksTo({reshape2_qkv_out_var}); return transpose2_2_out_var; } } // namespace patterns void MultiHeadMatmulFusePass::ApplyImpl(Graph* graph) const { FusePassBase::Init(name_scope_, graph); int fusion_count = patterns::BuildFusion(graph, name_scope_); AddStatis(fusion_count); } MultiHeadMatmulV2FusePass::MultiHeadMatmulV2FusePass() { AddOpCompat(OpCompat("mul")) .AddInput("X") // the shape shoule be (B, S, N*H) .IsTensor() .End() .AddInput("Y") // the shape shoule be (N*H, N*H) .IsTensor() .End() .AddOutput("Out") // the shape shoule be (B, S, N*H) .IsTensor() .End() .AddAttr("x_num_col_dims") .IsNumEQ(2) .End() .AddAttr("y_num_col_dims") .IsNumEQ(1) .End(); AddOpCompat(OpCompat("elementwise_add")) .AddInput("X") // in bias, shape is (B, S, N*H), // in biasqk, shape is (B, H, S, S) .IsTensor() .End() .AddInput("Y") // in bias, shape is (N*H) // in biasqk, shape is (B, H, S, S) .IsTensor() .End() // in bias, shape is (B, S, N*H) // in biasqk, shape is (B, H, S, S) .AddOutput("Out") .IsTensor() .End() // in bias, it equal to 2 // in biasqk, it equal to -1 or 0 .AddAttr("axis") .IsIntIn({2, -1, 0}) .End(); AddOpCompat(OpCompat("reshape2")) .AddInput("X") .IsTensor() .End() .AddInput("Shape") .IsTensor() .IsOptional() .End() .AddInput("ShapeTensor") .IsTensor() .IsOptional() .End() .AddOutput("Out") .IsTensor() .End() .AddOutput("XShape") .IsOptional() .IsTensor() .End() .AddAttr("shape") // -->(B, S, H, N) <--(B, S, N*H) .IsType>() .End(); // -->: (B, S, H, N) -> (B, H, S, N) // <--: (B, H, S, N) -> (B, S, H, N) AddOpCompat(OpCompat("transpose2")) .AddInput("X") .IsTensor() .End() .AddOutput("Out") .IsTensor() .End() .AddOutput("XShape") .IsOptional() .IsTensor() .End() .AddAttr("axis") // {0, 2, 1, 3} .IsType>() .End(); AddOpCompat(OpCompat("scale")) .AddInput("X") .IsTensor() .End() .AddOutput("Out") .IsTensor() .End() .AddAttr("scale") .IsType() // copy to new op. so unconstrained. .End() .AddAttr("bias") .IsNumEQ(0.f) .End() .AddAttr("bias_after_scale") // bias is 0, so unconstrained. .IsType() .End(); // QK (B, H, S, N)*(B, H, S, N) -> (B, H, S, S) // QKV (B, H, S, S)*(B, H, S, N) -> (B, H, S, N) AddOpCompat(OpCompat("matmul")) .AddInput("X") .IsTensor() .End() .AddInput("Y") .IsTensor() .End() .AddOutput("Out") .IsTensor() .End() .AddAttr("alpha") .IsNumEQ(1.0f) .End() .AddAttr("transpose_X") .IsBoolEQ(false) .End() .AddAttr("transpose_Y") // QK(true) QKV(false) .IsType() .End(); AddOpCompat(OpCompat("softmax")) .AddInput("X") .IsTensor() .End() .AddOutput("Out") .IsTensor() .End() .AddAttr("axis") .IsIntIn({-1, 3}) // shape is (B, H, S, S), so axis is -1 or 3 .End(); } int MultiHeadMatmulV2FusePass::BuildFusionV2(Graph* graph, const std::string& name_scope, Scope* scope) const { GraphPatternDetector gpd; auto* pattern = gpd.mutable_pattern(); // Create pattern. patterns::MultiHeadMatmulPattern multihead_pattern(pattern, name_scope); multihead_pattern(); // Create New OpDesc auto fuse_creater = [&](Node* input0, Node* mul0, Node* mul1, Node* mul2, Node* mul0_out, Node* mul1_out, Node* mul2_out, Node* mul0_w, Node* mul1_w, Node* mul2_w, Node* eltadd0_b, Node* eltadd1_b, Node* eltadd2_b, Node* eltadd_qk_b, Node* reshape2, Node* reshape2_qkv_out, Node* scale, Node* scale_out, Node* softmax_qk, Node* eltadd0, Node* eltadd1, Node* eltadd2, Node* matmul_qk, Node* reshape2_qkv) { auto scale_attr = BOOST_GET_CONST(float, scale->Op()->GetAttr("scale")); // mul (B * S * Hidden) x (Hidden * 3 * N * H) = (B * S * 3 * N * H) // bias (B * S * 3 * N * H) + bias (3 * N * H) // Transpose (B * S * 3 * N * H) -> (3 * B * N * S * H) auto* wq_tensor = scope->FindVar(mul0_w->Name())->GetMutable(); auto* wk_tensor = scope->FindVar(mul1_w->Name())->GetMutable(); auto* wv_tensor = scope->FindVar(mul2_w->Name())->GetMutable(); auto* bq_tensor = scope->FindVar(eltadd0_b->Name())->GetMutable(); auto* bk_tensor = scope->FindVar(eltadd1_b->Name())->GetMutable(); auto* bv_tensor = scope->FindVar(eltadd2_b->Name())->GetMutable(); auto* wq_data = wq_tensor->mutable_data(platform::CPUPlace()); auto* wk_data = wk_tensor->mutable_data(platform::CPUPlace()); auto* wv_data = wv_tensor->mutable_data(platform::CPUPlace()); auto* bq_data = bq_tensor->mutable_data(platform::CPUPlace()); auto* bk_data = bk_tensor->mutable_data(platform::CPUPlace()); auto* bv_data = bv_tensor->mutable_data(platform::CPUPlace()); auto combined_w_dims = phi::make_ddim({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]}); auto combined_bias_dims = phi::make_ddim({3, bq_tensor->dims()[0]}); // reuse the mul0_w and eltadd_0_b nodes for the combined nodes. auto* combined_w_desc = mul0_w->Var(); combined_w_desc->SetShape({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]}); combined_w_desc->SetPersistable(true); auto* combined_bias_desc = eltadd0_b->Var(); combined_bias_desc->SetShape({3, bq_tensor->dims()[0]}); combined_bias_desc->SetPersistable(true); framework::LoDTensor tmp_combined_w_tensor; tmp_combined_w_tensor.Resize(combined_w_dims); auto* tmp_combined_w_data = tmp_combined_w_tensor.mutable_data(platform::CPUPlace()); std::vector w_vec = {wq_data, wk_data, wv_data}; int dims_h = combined_w_dims[0], dims_w = combined_w_dims[2]; // Combine the three fc weights together. for (int i = 0; i < dims_h; i++) { for (int j = 0; j < 3; j++) { for (int k = 0; k < dims_w; k++) { int out_index = i * (3 * dims_w) + j * dims_w + k; int in_index = i * dims_w + k; tmp_combined_w_data[out_index] = w_vec[j][in_index]; } } } wq_tensor->Resize(combined_w_dims); auto* new_combined_w_data = wq_tensor->mutable_data(platform::CPUPlace()); memcpy(new_combined_w_data, tmp_combined_w_data, sizeof(float) * wq_tensor->numel()); scope->EraseVars({mul1_w->Name(), mul2_w->Name()}); framework::LoDTensor tmp_combined_bias_tensor; tmp_combined_bias_tensor.Resize(combined_bias_dims); auto* tmp_combined_bias_data = tmp_combined_bias_tensor.mutable_data(platform::CPUPlace()); size_t bias_size = bq_tensor->numel(); memcpy(tmp_combined_bias_data, bq_data, sizeof(float) * bias_size); memcpy(tmp_combined_bias_data + bias_size, bk_data, sizeof(float) * bias_size); memcpy(tmp_combined_bias_data + 2 * bias_size, bv_data, sizeof(float) * bias_size); bq_tensor->Resize(combined_bias_dims); auto* new_combined_bias_data = bq_tensor->mutable_data(platform::CPUPlace()); memcpy(new_combined_bias_data, tmp_combined_bias_data, sizeof(float) * bq_tensor->numel()); scope->EraseVars({eltadd1_b->Name(), eltadd2_b->Name()}); auto reshape_desc = reshape2->Op(); int head_number = BOOST_GET_CONST(std::vector, reshape_desc->GetAttr("shape")).at(2); OpDesc multihead_op_desc(mul0->Op()->Block()); multihead_op_desc.SetType("multihead_matmul"); multihead_op_desc.SetInput("Input", {input0->Name()}); multihead_op_desc.SetInput("W", {mul0_w->Name()}); multihead_op_desc.SetInput("Bias", {eltadd0_b->Name()}); multihead_op_desc.SetInput("BiasQK", {eltadd_qk_b->Name()}); multihead_op_desc.SetOutput("Out", {reshape2_qkv_out->Name()}); multihead_op_desc.SetAttr("alpha", scale_attr); multihead_op_desc.SetAttr("head_number", head_number); auto* mul0_op_desc = mul0->Op(); // all mul op has same input. if (mul0_op_desc->HasAttr("Input_scale")) { multihead_op_desc.SetAttr("Input_scale", mul0_op_desc->GetAttr("Input_scale")); } auto* add0_op_desc = eltadd0->Op(); auto* add1_op_desc = eltadd1->Op(); auto* add2_op_desc = eltadd2->Op(); if (add0_op_desc->HasAttr("out_threshold")) { auto out_scale0 = BOOST_GET_CONST(float, add0_op_desc->GetAttr("out_threshold")); auto out_scale1 = BOOST_GET_CONST(float, add1_op_desc->GetAttr("out_threshold")); auto out_scale2 = BOOST_GET_CONST(float, add2_op_desc->GetAttr("out_threshold")); auto out_scale_max = std::max(out_scale0, out_scale1); out_scale_max = std::max(out_scale_max, out_scale2); multihead_op_desc.SetAttr("fc_out_threshold", out_scale_max); } auto* softmax_qk_op_desc = softmax_qk->Op(); auto* matmul_qk_op_desc = matmul_qk->Op(); if (matmul_qk_op_desc->HasAttr("Input_scale")) { multihead_op_desc.SetAttr("qkv2context_plugin_int8", true); if (softmax_qk_op_desc->HasAttr("out_threshold")) { auto qkv_plugin_scale = BOOST_GET_CONST( float, softmax_qk_op_desc->GetAttr("out_threshold")); multihead_op_desc.SetAttr("dp_probs", qkv_plugin_scale); } } if (reshape2_qkv->Op()->HasAttr("out_threshold")) { multihead_op_desc.SetAttr("out_threshold", reshape2_qkv->Op()->GetAttr("out_threshold")); } auto* multihead = graph->CreateOpNode(&multihead_op_desc); IR_NODE_LINK_TO(input0, multihead); IR_NODE_LINK_TO(mul0_w, multihead); IR_NODE_LINK_TO(eltadd0_b, multihead); IR_NODE_LINK_TO(eltadd_qk_b, multihead); IR_NODE_LINK_TO(multihead, reshape2_qkv_out); }; int fusion_count{0}; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { if (!IsCompat(subgraph, g)) { LOG(WARNING) << "Op compat check in multihead_matmul_fuse_pass_v2 failed."; return; } // GET_IR_NODE_FROM_SUBGRAPH(dropout_out, dropout_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(input0, input0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul0, mul0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul0_out, mul0_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul0_w, mul0_w, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_0, reshape2_0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_0_out, reshape2_0_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_0, transpose2_0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_0_out, transpose2_0_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(scale, scale, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(scale_out, scale_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul1, mul1, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul1_out, mul1_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul1_w, mul1_w, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_1, reshape2_1, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_1_out, reshape2_1_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_1, transpose2_1, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_1_out, transpose2_1_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul2, mul2, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul2_out, mul2_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul2_w, mul2_w, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_2, reshape2_2, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_2_out, reshape2_2_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_2, transpose2_2, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_2_out, transpose2_2_out, multihead_pattern); // nodes need be removed GET_IR_NODE_FROM_SUBGRAPH(eltadd0, eltadd0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd0_b, eltadd0_b, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd0_out, eltadd0_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd1, eltadd1, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd1_b, eltadd1_b, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd1_out, eltadd1_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd2, eltadd2, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd2_b, eltadd2_b, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd2_out, eltadd2_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_qk, matmul_qk, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_qk_out, matmul_qk_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk, eltadd_qk, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_b, eltadd_qk_b, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_out, eltadd_qk_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(softmax_qk, softmax_qk, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(softmax_qk_out, softmax_qk_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv, matmul_qkv, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv_out, matmul_qkv_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv, reshape2_qkv, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv_out, reshape2_qkv_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_qkv, transpose2_qkv, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_qkv_out, transpose2_qkv_out, multihead_pattern); // If weights or biases in qkv's fc are shared by multiple multihead_matmul // patterns, we do not support this kind of fusion, this pass will not take // effect. bool is_fc_params_shared = mul0_w->outputs.size() > 1 || mul1_w->outputs.size() > 1 || mul2_w->outputs.size() > 1 || eltadd0_b->outputs.size() > 1 || eltadd1_b->outputs.size() > 1 || eltadd2_b->outputs.size() > 1; if (is_fc_params_shared) { return; } fuse_creater(input0, mul0, mul1, mul2, mul0_out, mul1_out, mul2_out, mul0_w, mul1_w, mul2_w, eltadd0_b, eltadd1_b, eltadd2_b, eltadd_qk_b, reshape2_0, reshape2_qkv_out, scale, scale_out, softmax_qk, eltadd0, eltadd1, eltadd2, matmul_qk, reshape2_qkv); std::unordered_set marked_nodes({eltadd0, eltadd1, eltadd2, eltadd1_b, eltadd2_b, eltadd0_out, eltadd1_out, eltadd2_out, reshape2_0, reshape2_1, reshape2_2, reshape2_0_out, reshape2_1_out, reshape2_2_out, transpose2_0, transpose2_1, transpose2_2, transpose2_0_out, transpose2_1_out, transpose2_2_out, matmul_qk, matmul_qk_out, eltadd_qk, eltadd_qk_out, softmax_qk, softmax_qk_out, transpose2_qkv, transpose2_qkv_out, matmul_qkv, matmul_qkv_out, mul0, mul1, mul2, mul0_out, mul1_out, mul2_out, mul1_w, mul2_w, reshape2_qkv, scale}); // Remove unneeded nodes. GraphSafeRemoveNodes(graph, marked_nodes); ++fusion_count; }; gpd(graph, handler); return fusion_count; } void MultiHeadMatmulV2FusePass::ApplyImpl(Graph* graph) const { FusePassBase::Init(name_scope_, graph); auto* scope = param_scope(); PADDLE_ENFORCE_NOT_NULL( scope, platform::errors::Fatal( "During the multiheadMatmul pass, The scope should not be null.")); int fusion_count = BuildFusionV2(graph, name_scope_, scope); if (fusion_count > 0) { graph->Set(kMultiheadMatmulPass, new bool(true)); } AddStatis(fusion_count); } MultiHeadMatmulV3FusePass::MultiHeadMatmulV3FusePass() { AddOpCompat(OpCompat("mul")) .AddInput("X") // the shape shoule be (B, S, N*H) .IsTensor() .End() .AddInput("Y") // the shape shoule be (N*H, N*H) .IsTensor() .End() .AddOutput("Out") // the shape shoule be (B, S, N*H) .IsTensor() .End() .AddAttr("x_num_col_dims") .IsNumEQ(2) .End() .AddAttr("y_num_col_dims") .IsNumEQ(1) .End(); AddOpCompat(OpCompat("elementwise_add")) .AddInput("X") // in bias, shape is (B, S, N*H), // in biasqk, shape is (B, H, S, S) .IsTensor() .End() .AddInput("Y") // in bias, shape is (N*H) // in biasqk, shape is (B, H, S, S) .IsTensor() .End() // in bias, shape is (B, S, N*H) // in biasqk, shape is (B, H, S, S) .AddOutput("Out") .IsTensor() .End() // in bias, it equal to 2 // in biasqk, it equal to -1 or 0 .AddAttr("axis") .IsIntIn({2, -1, 0}) .End(); AddOpCompat(OpCompat("reshape2")) .AddInput("X") .IsTensor() .End() .AddInput("Shape") .IsTensor() .IsOptional() .End() .AddInput("ShapeTensor") .IsTensor() .IsOptional() .End() .AddOutput("Out") .IsTensor() .End() .AddOutput("XShape") .IsOptional() .IsTensor() .End() .AddAttr("shape") // -->(B, S, H, N) <--(B, S, N*H) .IsType>() .End(); // -->: (B, S, H, N) -> (B, H, S, N) // <--: (B, H, S, N) -> (B, S, H, N) AddOpCompat(OpCompat("transpose2")) .AddInput("X") .IsTensor() .End() .AddOutput("Out") .IsTensor() .End() .AddOutput("XShape") .IsOptional() .IsTensor() .End() .AddAttr("axis") // {0, 2, 1, 3} .IsType>() .End(); // QK (B, H, S, N)*(B, H, S, N) -> (B, H, S, S) // QKV (B, H, S, S)*(B, H, S, N) -> (B, H, S, N) AddOpCompat(OpCompat("matmul")) .AddInput("X") .IsTensor() .End() .AddInput("Y") .IsTensor() .End() .AddOutput("Out") .IsTensor() .End() .AddAttr("alpha") .IsType() // QK(anyvalue, will copy to new op) QKV(1.0) .End() .AddAttr("transpose_X") .IsBoolEQ(false) .End() .AddAttr("transpose_Y") // QK(true) QKV(false) .IsType() .End(); AddOpCompat(OpCompat("matmul_v2")) .AddInput("X") .IsTensor() .End() .AddInput("Y") .IsTensor() .End() .AddOutput("Out") .IsTensor() .End() .AddAttr("trans_x") .IsBoolEQ(false) .End() .AddAttr("trans_y") // QK(true) QKV(false) .IsType() .End(); AddOpCompat(OpCompat("softmax")) .AddInput("X") .IsTensor() .End() .AddOutput("Out") .IsTensor() .End() .AddAttr("axis") .IsIntIn({-1, 3}) // shape is (B, H, S, S), so axis is -1 or 3 .End(); } int MultiHeadMatmulV3FusePass::BuildFusionV3(Graph* graph, const std::string& name_scope, Scope* scope) const { GraphPatternDetector gpd; auto* pattern = gpd.mutable_pattern(); // Create pattern. patterns::MultiHeadMatmulV3Pattern multihead_pattern(pattern, name_scope); multihead_pattern(); // Create New OpDesc auto fuse_creater = [&](Node* input0, Node* mul0, Node* mul1, Node* mul2, Node* mul0_out, Node* mul1_out, Node* mul2_out, Node* mul0_w, Node* mul1_w, Node* mul2_w, Node* eltadd0_b, Node* eltadd1_b, Node* eltadd2_b, Node* eltadd_qk_b, Node* reshape2, Node* reshape2_qkv_out, Node* matmul_qk) { auto scale_attr = BOOST_GET_CONST(float, matmul_qk->Op()->GetAttr("alpha")); // mul (B * S * Hidden) x (Hidden * 3 * N * H) = (B * S * 3 * N * H) // bias (B * S * 3 * N * H) + bias (3 * N * H) // Transpose (B * S * 3 * N * H) -> (3 * B * N * S * H) auto* wq_tensor = scope->FindVar(mul0_w->Name())->GetMutable(); auto* wk_tensor = scope->FindVar(mul1_w->Name())->GetMutable(); auto* wv_tensor = scope->FindVar(mul2_w->Name())->GetMutable(); auto* bq_tensor = scope->FindVar(eltadd0_b->Name())->GetMutable(); auto* bk_tensor = scope->FindVar(eltadd1_b->Name())->GetMutable(); auto* bv_tensor = scope->FindVar(eltadd2_b->Name())->GetMutable(); auto* wq_data = wq_tensor->mutable_data(platform::CPUPlace()); auto* wk_data = wk_tensor->mutable_data(platform::CPUPlace()); auto* wv_data = wv_tensor->mutable_data(platform::CPUPlace()); auto* bq_data = bq_tensor->mutable_data(platform::CPUPlace()); auto* bk_data = bk_tensor->mutable_data(platform::CPUPlace()); auto* bv_data = bv_tensor->mutable_data(platform::CPUPlace()); auto combined_w_dims = phi::make_ddim({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]}); auto combined_bias_dims = phi::make_ddim({3, bq_tensor->dims()[0]}); // reuse the mul0_w and eltadd_0_b nodes for the combined nodes. auto* combined_w_desc = mul0_w->Var(); combined_w_desc->SetShape({wq_tensor->dims()[0], 3, wq_tensor->dims()[1]}); combined_w_desc->SetPersistable(true); auto* combined_bias_desc = eltadd0_b->Var(); combined_bias_desc->SetShape({3, bq_tensor->dims()[0]}); combined_bias_desc->SetPersistable(true); framework::LoDTensor tmp_combined_w_tensor; tmp_combined_w_tensor.Resize(combined_w_dims); auto* tmp_combined_w_data = tmp_combined_w_tensor.mutable_data(platform::CPUPlace()); std::vector w_vec = {wq_data, wk_data, wv_data}; int dims_h = combined_w_dims[0], dims_w = combined_w_dims[2]; // Combine the three fc weights together. for (int i = 0; i < dims_h; i++) { for (int j = 0; j < 3; j++) { for (int k = 0; k < dims_w; k++) { int out_index = i * (3 * dims_w) + j * dims_w + k; int in_index = i * dims_w + k; tmp_combined_w_data[out_index] = w_vec[j][in_index]; } } } wq_tensor->Resize(combined_w_dims); auto* new_combined_w_data = wq_tensor->mutable_data(platform::CPUPlace()); memcpy(new_combined_w_data, tmp_combined_w_data, sizeof(float) * wq_tensor->numel()); scope->EraseVars({mul1_w->Name(), mul2_w->Name()}); framework::LoDTensor tmp_combined_bias_tensor; tmp_combined_bias_tensor.Resize(combined_bias_dims); auto* tmp_combined_bias_data = tmp_combined_bias_tensor.mutable_data(platform::CPUPlace()); size_t bias_size = bq_tensor->numel(); memcpy(tmp_combined_bias_data, bq_data, sizeof(float) * bias_size); memcpy(tmp_combined_bias_data + bias_size, bk_data, sizeof(float) * bias_size); memcpy(tmp_combined_bias_data + 2 * bias_size, bv_data, sizeof(float) * bias_size); bq_tensor->Resize(combined_bias_dims); auto* new_combined_bias_data = bq_tensor->mutable_data(platform::CPUPlace()); memcpy(new_combined_bias_data, tmp_combined_bias_data, sizeof(float) * bq_tensor->numel()); scope->EraseVars({eltadd1_b->Name(), eltadd2_b->Name()}); auto reshape_desc = reshape2->Op(); int head_number = BOOST_GET_CONST(std::vector, reshape_desc->GetAttr("shape")).at(2); OpDesc multihead_op_desc(mul0->Op()->Block()); multihead_op_desc.SetType("multihead_matmul"); multihead_op_desc.SetInput("Input", {input0->Name()}); multihead_op_desc.SetInput("W", {mul0_w->Name()}); multihead_op_desc.SetInput("Bias", {eltadd0_b->Name()}); multihead_op_desc.SetInput("BiasQK", {eltadd_qk_b->Name()}); multihead_op_desc.SetOutput("Out", {reshape2_qkv_out->Name()}); multihead_op_desc.SetAttr("alpha", scale_attr); multihead_op_desc.SetAttr("head_number", head_number); auto* multihead = graph->CreateOpNode(&multihead_op_desc); IR_NODE_LINK_TO(input0, multihead); IR_NODE_LINK_TO(mul0_w, multihead); IR_NODE_LINK_TO(eltadd0_b, multihead); IR_NODE_LINK_TO(eltadd_qk_b, multihead); IR_NODE_LINK_TO(multihead, reshape2_qkv_out); }; int fusion_count{0}; auto handler = [&](const GraphPatternDetector::subgraph_t& subgraph, Graph* g) { // GET_IR_NODE_FROM_SUBGRAPH(dropout_out, dropout_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(input0, input0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul0, mul0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul0_out, mul0_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul0_w, mul0_w, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_0, reshape2_0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_0_out, reshape2_0_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_0, transpose2_0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_0_out, transpose2_0_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul1, mul1, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul1_out, mul1_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul1_w, mul1_w, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_1, reshape2_1, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_1_out, reshape2_1_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_1, transpose2_1, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_1_out, transpose2_1_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul2, mul2, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul2_out, mul2_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(mul2_w, mul2_w, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_2, reshape2_2, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_2_out, reshape2_2_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_2, transpose2_2, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_2_out, transpose2_2_out, multihead_pattern); // nodes need be removed GET_IR_NODE_FROM_SUBGRAPH(eltadd0, eltadd0, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd0_b, eltadd0_b, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd0_out, eltadd0_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd1, eltadd1, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd1_b, eltadd1_b, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd1_out, eltadd1_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd2, eltadd2, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd2_b, eltadd2_b, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd2_out, eltadd2_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_qk, matmul_qk, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_qk_out, matmul_qk_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk, eltadd_qk, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_b, eltadd_qk_b, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(eltadd_qk_out, eltadd_qk_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(softmax_qk, softmax_qk, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(softmax_qk_out, softmax_qk_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv, matmul_qkv, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(matmul_qkv_out, matmul_qkv_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv, reshape2_qkv, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(reshape2_qkv_out, reshape2_qkv_out, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_qkv, transpose2_qkv, multihead_pattern); GET_IR_NODE_FROM_SUBGRAPH(transpose2_qkv_out, transpose2_qkv_out, multihead_pattern); // If weights or biases in qkv's fc are shared by multiple multihead_matmul // patterns, we do not support this kind of fusion, this pass will not take // effect. bool is_fc_params_shared = mul0_w->outputs.size() > 1 || mul1_w->outputs.size() > 1 || mul2_w->outputs.size() > 1 || eltadd0_b->outputs.size() > 1 || eltadd1_b->outputs.size() > 1 || eltadd2_b->outputs.size() > 1; if (is_fc_params_shared) { return; } fuse_creater(input0, mul0, mul1, mul2, mul0_out, mul1_out, mul2_out, mul0_w, mul1_w, mul2_w, eltadd0_b, eltadd1_b, eltadd2_b, eltadd_qk_b, reshape2_0, reshape2_qkv_out, matmul_qk); std::unordered_set marked_nodes({eltadd0, eltadd1, eltadd2, eltadd1_b, eltadd2_b, eltadd0_out, eltadd1_out, eltadd2_out, reshape2_0, reshape2_1, reshape2_2, reshape2_0_out, reshape2_1_out, reshape2_2_out, transpose2_0, transpose2_1, transpose2_2, transpose2_0_out, transpose2_1_out, transpose2_2_out, matmul_qk, matmul_qk_out, eltadd_qk, eltadd_qk_out, softmax_qk, softmax_qk_out, transpose2_qkv, transpose2_qkv_out, matmul_qkv, matmul_qkv_out, mul0, mul1, mul2, mul0_out, mul1_out, mul2_out, mul1_w, mul2_w, reshape2_qkv}); // Remove unneeded nodes. GraphSafeRemoveNodes(graph, marked_nodes); ++fusion_count; }; gpd(graph, handler); return fusion_count; } void MultiHeadMatmulV3FusePass::ApplyImpl(Graph* graph) const { FusePassBase::Init(name_scope_, graph); auto* scope = param_scope(); PADDLE_ENFORCE_NOT_NULL( scope, platform::errors::Fatal( "During the multiheadMatmul pass, The scope should not be null.")); int fusion_count = BuildFusionV3(graph, name_scope_, scope); if (fusion_count > 0) { graph->Set(kMultiheadMatmulPass, new bool(true)); } AddStatis(fusion_count); } } // namespace ir } // namespace framework } // namespace paddle REGISTER_PASS(multihead_matmul_fuse_pass, paddle::framework::ir::MultiHeadMatmulFusePass); REGISTER_PASS(multihead_matmul_fuse_pass_v2, paddle::framework::ir::MultiHeadMatmulV2FusePass); REGISTER_PASS(multihead_matmul_fuse_pass_v3, paddle::framework::ir::MultiHeadMatmulV3FusePass); REGISTER_PASS_CAPABILITY(multihead_matmul_fuse_pass_v2) .AddCombination( paddle::framework::compatible::OpVersionComparatorCombination() .EQ("mul", 0) .LE("elementwise_add", 1) .EQ("reshape2", 0) .EQ("transpose2", 0) .EQ("scale", 0) .LE("matmul", 1) .EQ("softmax", 0)); REGISTER_PASS_CAPABILITY(multihead_matmul_fuse_pass_v3) .AddCombination( paddle::framework::compatible::OpVersionComparatorCombination() .LE("elementwise_add", 1) .EQ("reshape2", 0) .EQ("transpose2", 0) .EQ("scale", 0) .LE("matmul", 1) .EQ("matmul_v2", 0) .EQ("softmax", 0));