# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import os __all__ = ["distributed_batch_reader"] def distributed_batch_reader(batch_reader): """ Create a reader for multi-process training. The input must be a batch reader. Args: batch_reader (callable): The input reader should be a batch reader. Examples: .. code-block:: python import paddle import paddle.fluid as fluid train_reader = paddle.batch(paddle.dataset.mnist.train(), batch_size=32,drop_last=True) train_reader = fluid.contrib.reader.distributed_batch_reader( train_reader) """ trainers_num = int(os.environ.get('PADDLE_TRAINERS_NUM', 1)) trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0)) assert trainer_id < trainers_num def decorate_for_multi_process(): if trainers_num > 1: print("start data reader (trainers_num: {}, trainer_id: {})".format( trainers_num, trainer_id)) train_data, idx = None, 1 for batch_id, data in enumerate(batch_reader()): if trainers_num > 1: if idx < trainers_num: if idx == trainer_id + 1: train_data = data idx += 1 else: if idx == trainer_id + 1: train_data = data assert train_data is not None, "train data should not be None." yield train_data train_data, idx = None, 1 else: yield data return decorate_for_multi_process