/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/inference/tensorrt/convert/op_converter.h" namespace paddle { namespace inference { namespace tensorrt { /* * DropoutOp. This Layer doesn't has weights. */ class DropoutOpConverter : public OpConverter { public: void operator()(const framework::proto::OpDesc& op, const framework::Scope& scope, bool test_mode) override { VLOG(4) << "convert a fluid dropout op to tensorrt dropout layer"; framework::OpDesc op_desc(op, nullptr); // Declare inputs auto* input1 = engine_->GetITensor(op_desc.Input("X")[0]); float dropout_prob = boost::get(op_desc.GetAttr("dropout_prob")); platform::CPUPlace cpu_place; std::unique_ptr weight_tensor( new framework::LoDTensor()); weight_tensor->Resize(framework::make_ddim({1})); auto* weight_data = weight_tensor->mutable_data(platform::CPUPlace()); weight_data[0] = 1 - dropout_prob; TensorRTEngine::Weight scale_weights{ nvinfer1::DataType::kFLOAT, static_cast(weight_data), weight_tensor->memory_size() / sizeof(float)}; TensorRTEngine::Weight shift_weights{nvinfer1::DataType::kFLOAT, nullptr, 0}; TensorRTEngine::Weight power_weights{nvinfer1::DataType::kFLOAT, nullptr, 0}; auto* layer = TRT_ENGINE_ADD_LAYER( engine_, Scale, *const_cast(input1), nvinfer1::ScaleMode::kUNIFORM, shift_weights.get(), scale_weights.get(), power_weights.get()); engine_->weight_map[op_desc.Output("Out").front() + "_dropout"] = std::move(weight_tensor); auto output_name = op_desc.Output("Out")[0]; layer->setName(("dropout (Output: " + output_name + ")").c_str()); engine_->SetITensor(output_name, layer->getOutput(0)); if (test_mode) { engine_->DeclareOutput(output_name); } } }; } // namespace tensorrt } // namespace inference } // namespace paddle USE_OP(dropout); REGISTER_TRT_OP_CONVERTER(dropout, DropoutOpConverter);