/* Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/diag_v2_op.h" namespace paddle { namespace operators { // Extract the diagonal of a matrix 'x' to a vector 'out'. template __global__ void ExtractDiagonalKernel(T* out, const T* x, std::ptrdiff_t start, std::ptrdiff_t size, const std::ptrdiff_t sumStride, const std::ptrdiff_t outStride) { for (std::ptrdiff_t idx = blockIdx.x * blockDim.x + threadIdx.x; idx < size; idx += gridDim.x * blockDim.x) { const std::ptrdiff_t xOffset = start + sumStride * idx; out[outStride * idx] = x[xOffset]; } } // Paste a vector 'x' to the diagonal of a matrix 'out' template __global__ void PasteDiagonalKernel(T* out, const T* x, std::ptrdiff_t start, std::ptrdiff_t x_length, const std::ptrdiff_t sumStride, const std::ptrdiff_t xStride) { for (std::ptrdiff_t idx = blockIdx.x * blockDim.x + threadIdx.x; idx < x_length; idx += gridDim.x * blockDim.x) { const std::ptrdiff_t outOffset = start + sumStride * idx; out[outOffset] = x[xStride * idx]; } } template class DiagV2CUDAKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto* X = context.Input("X"); auto* x_data = X->data(); auto x_dims = X->dims(); int offset = context.Attr("offset"); auto* out = context.Output("Out"); T* out_data = out->mutable_data(context.GetPlace()); auto out_dims = out->dims(); auto& dev_ctx = context.template device_context(); auto GetBlockGridSize = [&dev_ctx](int64_t size) { const int64_t block_size = std::min(size, static_cast(dev_ctx.GetMaxThreadsPerBlock())); int64_t max_threads = dev_ctx.GetMaxPhysicalThreadCount(); const int64_t max_blocks = std::max(((max_threads - 1) / block_size + 1), static_cast(1)); const int64_t grid_size = std::min(max_blocks, (size + block_size - 1) / block_size); return std::tuple{block_size, grid_size}; }; if (x_dims.size() == 1) { float padding_value = context.Attr("padding_value"); math::SetConstant set_padding_value; set_padding_value(dev_ctx, out, static_cast(padding_value)); auto x_length = x_dims[0]; auto size = (offset > 0) ? x_length + offset : x_length - offset; const int& x_stride = ComputeStride(0, x_dims); if (size > 0) { const auto& out_stride_0 = ComputeStride(0, out_dims); const auto& out_stride_1 = ComputeStride(1, out_dims); auto start = (offset >= 0 ? offset * out_stride_1 : -offset * out_stride_0); std::tuple block_grid_size = GetBlockGridSize(size); PasteDiagonalKernel< T><<(block_grid_size), std::get<0>(block_grid_size), 0, dev_ctx.stream()>>>(out_data, x_data, start, x_length, out_stride_0 + out_stride_1, x_stride); } } else { const int& x_stride_0 = ComputeStride(0, x_dims); const int& x_stride_1 = ComputeStride(1, x_dims); int64_t size; if (offset > 0) { size = std::min(x_dims[0], x_dims[1] - offset); } else { size = std::min(x_dims[0] + offset, x_dims[1]); } if (size > 0) { auto start = (offset >= 0 ? offset * x_stride_1 : -offset * x_stride_0); const auto& out_stride_0 = ComputeStride(0, out_dims); std::tuple block_grid_size = GetBlockGridSize(size); ExtractDiagonalKernel< T><<(block_grid_size), std::get<0>(block_grid_size), 0, dev_ctx.stream()>>>(out_data, x_data, start, size, x_stride_0 + x_stride_1, out_stride_0); } } } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OP_CUDA_KERNEL( diag_v2, ops::DiagV2CUDAKernel, ops::DiagV2CUDAKernel, ops::DiagV2CUDAKernel, ops::DiagV2CUDAKernel);