# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function from ..fluid.framework import Variable from ..fluid.initializer import Constant from ..fluid.layers import core from ..fluid.layer_helper import LayerHelper from ..fluid.data_feeder import check_variable_and_dtype, check_type, check_dtype, convert_dtype from ..fluid.framework import convert_np_dtype_to_dtype_, in_dygraph_mode, _varbase_creator, device_guard, OpProtoHolder from ..fluid.layers import fill_constant from paddle.common_ops_import import * # TODO: define functions to get create a tensor from ..fluid.layers import crop_tensor #DEFINE_ALIAS from ..fluid.layers import diag #DEFINE_ALIAS from ..fluid.layers import eye #DEFINE_ALIAS from ..fluid.layers import fill_constant #DEFINE_ALIAS from ..fluid.layers import create_tensor #DEFINE_ALIAS from ..fluid.layers import linspace #DEFINE_ALIAS __all__ = [ 'create_tensor', # 'create_lod_tensor', # 'create_random_int_lodtensor', 'crop_tensor', 'diag', 'eye', 'fill_constant', # 'get_tensor_from_selected_rows', 'linspace', 'ones', 'ones_like', 'zeros', 'zeros_like', 'arange', 'eye', 'full', 'full_like', 'triu', 'tril', 'meshgrid' ] def full_like(x, fill_value, dtype=None, name=None): """ :alias_main: paddle.full_like :alias: paddle.full_like,paddle.tensor.full_like,paddle.tensor.creation.full_like **full_like** This function creates a tensor filled with `fill_value` which has identical shape and dtype with `input`. Args: x(Variable): The input tensor which specifies shape and data type. The data type can be bool, float16, float32, float64, int32, int64. fill_value(bool|float|int|Variable): The value to fill the tensor with. Note: this value shouldn't exceed the range of the output data type. dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type of output. The data type can be one of bool, float16, float32, float64, int32, int64. The default value is None, which means the output data type is the same as input. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: out(Variable): The Tensor variable storing the output. Examples: .. code-block:: python import paddle import numpy as np paddle.enable_imperative() # Now we are in imperative mode input = paddle.full(shape=[2, 3], fill_value=0.0, dtype='float32', name='input') output = paddle.full_like(input, 2.0) #output result : [array([[2., 2., 2.], [2., 2., 2.]], dtype=float32)] """ if dtype is None: dtype = x.dtype else: if not isinstance(dtype, core.VarDesc.VarType): dtype = convert_np_dtype_to_dtype_(dtype) if in_dygraph_mode(): return core.ops.fill_any_like(x, 'value', fill_value, 'dtype', dtype) helper = LayerHelper("full_like", **locals()) check_dtype(dtype, 'dtype', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'full_like') out = helper.create_variable_for_type_inference(dtype=dtype) helper.append_op( type='fill_any_like', inputs={'X': [x]}, attrs={'value': fill_value, "dtype": dtype}, outputs={'Out': [out]}) return out def ones(shape, dtype=None, out=None, device=None): """ :alias_main: paddle.ones :alias: paddle.ones,paddle.tensor.ones,paddle.tensor.creation.ones The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 1. Args: shape(tuple|list): Shape of output tensor. dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports bool, float16, float32, float64, int32 and int64. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. device(str, optional): Which device to run the operator. The :attr:`device` must be None,'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in the paddle program. Default value is False. Returns: Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 1. Examples: .. code-block:: python import paddle data = paddle.ones(shape=[3, 2], dtype='float32') # [[1., 1.], [1., 1.], [1., 1.]] data = paddle.ones(shape=[2, 2], dtype='float32', device='cpu') # [[1., 1.], [1., 1.]] """ check_dtype(dtype, 'create data type', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'zeros') if device is not None: if device not in ['cpu', 'gpu']: raise ValueError( "The value of 'device' in zeros_op must be cpu or gpu, but received %s." % (device)) with fluid.device_guard(device): return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out) return fill_constant(value=1.0, shape=shape, dtype=dtype, out=out) def ones_like(input, dtype=None, device=None, name=None): """ :alias_main: paddle.ones_like :alias: paddle.ones_like,paddle.tensor.ones_like,paddle.tensor.creation.ones_like This function creates a ones tensor which has identical shape and dtype with `input`. Args: input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be float32, float64, int32, int64. dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64. The default value is None, the dtype is the same as input. device(str, optional): Which device to run the operator. The :attr:`device` must be None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in the paddle program. Default value is None. name(str, optional): The name of output variable, normally there is no need for user to set this this property. Default value is None, the framework set the name of output variable. Returns: out(Variable): The tensor variable storing the output. Examples: .. code-block:: python import paddle import paddle.fluid as fluid x = fluid.data(name='x', dtype='float32', shape=[3]) data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0] data1 = paddle.ones_like(input=x, device="gpu") data1=[1.0, 1.0. 1.0] """ helper = LayerHelper("zeros_like", **locals()) attrs = {"value": 1.0} var_dtype = None if dtype is not None: check_dtype( dtype, 'create data type', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'zeros_like') var_dtype = convert_np_dtype_to_dtype_(dtype) attrs["dtype"] = var_dtype else: var_dtype = input.dtype out = helper.create_variable_for_type_inference(dtype=var_dtype) if device is not None: if device not in ['cpu', 'gpu']: raise ValueError( "The value of 'device' in zeros_op must be cpu or gpu, but received %s." % (device)) with fluid.device_guard(device): helper.append_op( type='fill_any_like', inputs={'X': [input]}, attrs=attrs, outputs={'Out': [out]}) return out helper.append_op( type='fill_any_like', inputs={'X': [input]}, attrs=attrs, outputs={'Out': [out]}) out.stop_gradient = True return out def zeros(shape, dtype, out=None, device=None): """ :alias_main: paddle.zeros :alias: paddle.zeros,paddle.tensor.zeros,paddle.tensor.creation.zeros The OP creates a tensor of specified :attr:`shape` and :attr:`dtype`, and fills it with 0. Args: shape(tuple|list): Shape of output tensor. dtype(np.dtype|core.VarDesc.VarType|str): Data type of output tensor, it supports bool, float16, float32, float64, int32 and int64. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. device(str, optional): Which device to run the operator. The :attr:`device` must be None,'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in the paddle program. Default value is False. Returns: Variable: A tensor of data type :attr:`dtype` with shape :attr:`shape` and all elements set to 0. Examples: .. code-block:: python import paddle data = paddle.zeros(shape=[3, 2], dtype='float32') # [[0., 0.], [0., 0.], [0., 0.]] data = paddle.zeros(shape=[2, 2], dtype='float32', device='cpu') # [[0., 0.], [0., 0.]] """ check_dtype(dtype, 'create data type', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'zeros') if device is not None: if device not in ['cpu', 'gpu']: raise ValueError( "The value of 'device' in zeros_op must be cpu or gpu, but received %s." % (device)) with fluid.device_guard(device): return fill_constant(value=0.0, shape=shape, dtype=dtype, out=out) return fill_constant(value=0.0, shape=shape, dtype=dtype, out=out) def zeros_like(input, dtype=None, device=None, name=None): """ :alias_main: paddle.zeros_like :alias: paddle.zeros_like,paddle.tensor.zeros_like,paddle.tensor.creation.zeros_like This function creates a zeros tensor which has identical shape and dtype with `input`. Args: input(Variable): The input tensor which specifies shape and dtype.The dtype of input can be bool, float32, float64, int32, int64. dtype(np.dtype|core.VarDesc.VarType|str, optional): The data type can be set bool, float32, float64, int32, int64. The default value is None, the dtype is the same as input. device(str, optional): Which device to run the operator. The :attr:`device` must be None, 'cpu', 'gpu'. If :attr:`device` is None, it will be choose the device that the user set in the paddle program. Default value is None. name(str, optional): The name of output variable, normally there is no need for user to set this this property. Default value is None, the framework set the name of output variable. Returns: out(Variable): The tensor variable storing the output. Examples: .. code-block:: python import paddle import paddle.fluid as fluid x = fluid.data(name='x', dtype='float32', shape=[3]) data = paddle.ones_like(x) # data=[1.0, 1.0, 1.0] data1 = paddle.ones_like(input=x, device="gpu") #data1=[1.0, 1.0. 1.0] """ helper = LayerHelper("zeros_like", **locals()) attrs = {"value": 0.0} var_dtype = None if dtype is not None: check_dtype(dtype, 'create data type', ['bool', 'float32', 'float64', 'int32', 'int64'], 'zeros_like') var_dtype = convert_np_dtype_to_dtype_(dtype) attrs["dtype"] = var_dtype else: var_dtype = input.dtype out = helper.create_variable_for_type_inference(dtype=var_dtype) if device is not None: if device not in ['cpu', 'gpu']: raise ValueError( "The value of 'device' in zeros_op must be cpu or gpu, but received %s." % (device)) with fluid.device_guard(device): helper.append_op( type='fill_any_like', inputs={'X': [input]}, attrs=attrs, outputs={'Out': [out]}) return out helper.append_op( type='fill_any_like', inputs={'X': [input]}, attrs=attrs, outputs={'Out': [out]}) out.stop_gradient = True return out def eye(num_rows, num_columns=None, out=None, dtype='float32', stop_gradient=True, name=None): """ **eye** This function constructs an identity tensor. Args: num_rows(int): the number of rows in each batch tensor. num_columns(int, optional): the number of columns in each batch tensor. If None, default: num_rows. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. dtype(string, optional): The data type of the returned tensor. It should be int32, int64, float16, float32, float64. stop_gradient(bool, optional): Whether stop calculating gradients. Default:True. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name` Returns: Variable: An identity Tensor or LoDTensor of shape [num_rows, num_columns]. Examples: .. code-block:: python import paddle data = paddle.eye(3, dtype='int32') # [[1, 0, 0] # [0, 1, 0] # [0, 0, 1]] data = paddle.eye(2, 3, dtype='int32') # [[1, 0, 0] # [0, 1, 0]] """ helper = LayerHelper("eye", **locals()) if not isinstance(num_rows, int) or num_rows < 0: raise TypeError("num_rows should be a non-negative int") if num_columns is not None: if not isinstance(num_columns, int) or num_columns < 0: raise TypeError("num_columns should be a non-negative int") else: num_columns = num_rows if out is None: out = helper.create_variable_for_type_inference(dtype=dtype) c_dtype = convert_np_dtype_to_dtype_(dtype) helper.append_op( type='eye', inputs={}, outputs={'Out': [out]}, attrs={ 'num_rows': num_rows, 'num_columns': num_columns, 'dtype': c_dtype }, stop_gradient=True) out.stop_gradient = stop_gradient return out def full(shape, fill_value, out=None, dtype=None, device=None, stop_gradient=True, name=None): """ :alias_main: paddle.full :alias: paddle.full,paddle.tensor.full,paddle.tensor.creation.full This Op return a Tensor with the `fill_value` which size is same as `shape` Args: shape(list|tuple|Variable): Shape of the Tensor to be created. The data type is ``int32`` or ``int64`` . If ``shape`` is a list or tuple, the elements of it should be integers or Tensors with shape [1]. If ``shape`` is an Variable, it should be an 1-D Tensor . fill_value(bool|float16|float32|float64|int32|int64|Variable): The constant value used to initialize the Tensor to be created. If fill_value is an Variable, it must be an 1-D Tensor. out(Variable, optional): Optional output which can be any created Variable that meets the requirements to store the result of operation. if out is None, a new Varibale will be create to store the result. dtype(np.dtype|core.VarDesc.VarType|str, optional): Data type of the output tensor which can be float16, float32, float64, int32, int64, if dytpe is `None`, the data type of created tensor is `float32` device(str, optional): On which device to run this Op. The :attr:`device` must be None, 'cpu' or 'gpu'. If :attr:`device` is None, the device that the user set in the paddle program will be chosen. Default value is None. stop_gradient(bool, optional): Indicating if we stop gradient from current(out) Variable, default value is True. name(str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: Tensor which is created according to shape and dtype. Raises: TypeError: The `dtype` must be one of None, bool, float16, float32, float64, int32 and int64. TypeError: The `out` must be a Variable. TypeError: The `shape` must be one of Variable, list tuple. Examples: .. code-block:: python import paddle import paddle.fluid as fluid data1 = paddle.full(shape=[2,1], fill_value=0, dtype='int64') # data1=[[0],[0]] data2 = paddle.full(shape=[2,1], fill_value=5, dtype='int64', device='gpu') # data2=[[5],[5]] # attr shape is a list which contains Variable Tensor. positive_2 = fluid.layers.fill_constant([1], "int32", 2) data3 = paddle.full(shape=[1, positive_2], dtype='float32', fill_value=1.5) # data3=[1.5, 1.5] # attr shape is an Variable Tensor. shape = fluid.layers.fill_constant([1,2], "int32", 2) # shape=[2,2] data4 = paddle.full(shape=shape, dtype='bool', fill_value=True) # data4=[[True,True],[True,True]] # attr value is an Variable Tensor. val = fluid.layers.fill_constant([1], "float32", 2.0) # val=[2.0] data5 = paddle.full(shape=[2,1], fill_value=val, dtype='float32') #data5=[[2.0],[2.0]] """ helper = LayerHelper("full", **locals()) if dtype is None: dtype = 'float32' check_dtype(dtype, 'create data type', ['bool', 'float16', 'float32', 'float64', 'int32', 'int64'], 'full') check_type(shape, 'shape', (Variable, list, tuple), 'full') if out is not None: check_type(out, 'out', (Variable), 'full') if out is None: out = helper.create_variable_for_type_inference(dtype=dtype) out.stop_gradient = stop_gradient with device_guard(device): out = fill_constant(shape=shape, dtype=dtype, value=fill_value, out=out) return out def arange(start, end, step=1, dtype=None, name=None): """ :alias_main: paddle.arange :alias: paddle.arange,paddle.tensor.arange,paddle.tensor.creation.arange Return evenly spaced values within a given interval. Values are generated within the half-open interval [start, stop) (in other words, the interval including start but excluding stop). Parameters: start(float32 | float64 | int32 | int64 | Variable): Start of interval. The interval includes this value. when start is Variable, it is a 1-D Tensor with shape [1]. end(float32 | float64 | int32 | int64 | Variable): End of interval. The interval does not include this value, except in some cases where step is not an integer and floating point round-off affects the length of out. When end is Variable, it is a 1-D Tensor with shape [1]. step(float32 | float64 | int32 | int64 | Variable): Spacing between values. For any output out, this is the distance between two adjacent values, out[i+1] - out[i]. dtype(str|core.VarDesc.VarType): the data type of the output tensor, can be float32, float64, int32, int64. Returns: a 1-D Tensor which is evenly spaced values within a given interval. Its data type is set by dtype. Return type: Variable examples: .. code-block:: python import paddle # expected out put: [0, 2, 4, 6, 8] data = paddle.arange(0, 10, 2, 'int32') #dygraph mode import paddle import paddle.fluid as fluid with fluid.dygraph.guard(): x = paddle.arange(0, 6, 2) # x: [0, 2, 4] # x dtype: float32 """ helper = LayerHelper("range", **locals()) if dtype is None: dtype = 'float32' check_dtype(dtype, 'create data type', ['float32', 'float64', 'int32', 'int64'], 'range') dtype = convert_dtype(dtype) if not isinstance(start, Variable): start = fill_constant([1], dtype, start) if not isinstance(end, Variable): end = fill_constant([1], dtype, end) if not isinstance(step, Variable): step = fill_constant([1], dtype, step) out = helper.create_variable_for_type_inference(dtype=start.dtype) helper.append_op( type='range', inputs={'Start': start, 'End': end, 'Step': step}, outputs={'Out': [out]}) out.stop_gradient = True return out def _tril_triu_op(helper): """Base op of tril_op and triu_op """ op_type = helper.layer_type x = helper.kwargs.get('input', None) assert x is not None, 'x cannot be None in {}'.format(op_type) check_variable_and_dtype(x, 'x', ['float32', 'float64', 'int32', 'int64'], op_type) if len(x.shape) < 2: raise ValueError("input shape in {} must be at least 2-D".format( op_type)) diagonal = helper.kwargs.get('diagonal', 0) if not isinstance(diagonal, (int, )): raise TypeError("diagonal in {} must be a python Int".format(op_type)) name = helper.kwargs.get('name', None) if name is None: out = helper.create_variable_for_type_inference(dtype=x.dtype) else: out = helper.create_variable( name=name, dtype=x.dtype, persistable=False) helper.append_op( type="tril_triu", inputs={"X": x}, attrs={ "diagonal": diagonal, "lower": True if op_type == 'tril' else False, }, outputs={"Out": out}, ) return out def tril(input, diagonal=0, name=None): """ :alias_main: paddle.tril :alias: paddle.tril,paddle.tensor.tril,paddle.tensor.creation.tril This op returns the lower triangular part of a matrix (2-D tensor) or batch of matrices :attr:`input`, the other elements of the result tensor are set to 0. The lower triangular part of the matrix is defined as the elements on and below the diagonal. Args: input (Variable): The input variable which is a Tensor. Support data types: ``float64``, ``float32``, ``int32``, ``int64``. diagonal (int, optional): The diagonal to consider, default value is 0. If :attr:`diagonal` = 0, all elements on and below the main diagonal are retained. A positive value includes just as many diagonals above the main diagonal, and similarly a negative value excludes just as many diagonals below the main diagonal. The main diagonal are the set of indices :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where :math:`d_{1}, d_{2}` are the dimensions of the matrix. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: Tensor, results of lower triangular operation by the specified diagonal of input tensor, it's data type is the same as input's Tensor. Raises: TypeError: diagonal is not a int type. ValueError: dimension of :attr:`input` is less than 2. Examples: .. code-block:: python import numpy as np import paddle.tensor as tensor import paddle.fluid as fluid data = np.arange(1, 13, dtype="int64").reshape(3,-1) # array([[ 1, 2, 3, 4], # [ 5, 6, 7, 8], # [ 9, 10, 11, 12]]) x = fluid.data(shape=(-1, 4), dtype='int64', name='x') exe = fluid.Executor(fluid.CPUPlace()) # example 1, default diagonal tril = tensor.tril(x) tril_out, = exe.run(fluid.default_main_program(), feed={"x": data}, fetch_list=[tril], return_numpy=True) # array([[ 1, 0, 0, 0], # [ 5, 6, 0, 0], # [ 9, 10, 11, 0]]) # example 2, positive diagonal value tril = tensor.tril(x, diagonal=2) tril_out, = exe.run(fluid.default_main_program(), feed={"x": data}, fetch_list=[tril], return_numpy=True) # array([[ 1, 2, 3, 0], # [ 5, 6, 7, 8], # [ 9, 10, 11, 12]]) # example 3, negative diagonal value tril = tensor.tril(x, diagonal=-1) tril_out, = exe.run(fluid.default_main_program(), feed={"x": data}, fetch_list=[tril], return_numpy=True) # array([[ 0, 0, 0, 0], # [ 5, 0, 0, 0], # [ 9, 10, 0, 0]]) """ if in_dygraph_mode(): op = getattr(core.ops, 'tril_triu') return op(input, 'diagonal', diagonal, "lower", True) return _tril_triu_op(LayerHelper('tril', **locals())) def triu(input, diagonal=0, name=None): """ :alias_main: paddle.triu :alias: paddle.triu,paddle.tensor.triu,paddle.tensor.creation.triu This op returns the upper triangular part of a matrix (2-D tensor) or batch of matrices :attr:`input`, the other elements of the result tensor are set to 0. The upper triangular part of the matrix is defined as the elements on and above the diagonal. Args: input (Variable): The input variable which is a Tensor. Support data types: ``float64``, ``float32``, ``int32``, ``int64``. diagonal (int, optional): The diagonal to consider, default value is 0. If :attr:`diagonal` = 0, all elements on and above the main diagonal are retained. A positive value excludes just as many diagonals above the main diagonal, and similarly a negative value includes just as many diagonals below the main diagonal. The main diagonal are the set of indices :math:`\{(i, i)\}` for :math:`i \in [0, \min\{d_{1}, d_{2}\} - 1]` where :math:`d_{1}, d_{2}` are the dimensions of the matrix. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: Tensor, results of upper triangular operation by the specified diagonal of input tensor, it's data type is the same as input's Tensor. Raises: TypeError: diagonal is not a int type. ValueError: dimension of :attr:`input` is less than 2. Examples: .. code-block:: python import numpy as np import paddle.fluid as fluid import paddle.tensor as tensor data = np.arange(1, 13, dtype="int64").reshape(3,-1) # array([[ 1, 2, 3, 4], # [ 5, 6, 7, 8], # [ 9, 10, 11, 12]]) x = fluid.data(shape=(-1, 4), dtype='int64', name='x') exe = fluid.Executor(fluid.CPUPlace()) # example 1, default diagonal triu = tensor.triu(x) triu_out, = exe.run(fluid.default_main_program(), feed={"x": data}, fetch_list=[triu], return_numpy=True) # array([[ 1, 2, 3, 4], # [ 0, 6, 7, 8], # [ 0, 0, 11, 12]]) # example 2, positive diagonal value triu = tensor.triu(x, diagonal=2) triu_out, = exe.run(fluid.default_main_program(), feed={"x": data}, fetch_list=[triu], return_numpy=True) # array([[0, 0, 3, 4], # [0, 0, 0, 8], # [0, 0, 0, 0]]) # example 3, negative diagonal value triu = tensor.triu(x, diagonal=-1) triu_out, = exe.run(fluid.default_main_program(), feed={"x": data}, fetch_list=[triu], return_numpy=True) # array([[ 1, 2, 3, 4], # [ 5, 6, 7, 8], # [ 0, 10, 11, 12]]) """ if in_dygraph_mode(): op = getattr(core.ops, 'tril_triu') return op(input, 'diagonal', diagonal, "lower", False) return _tril_triu_op(LayerHelper('triu', **locals())) def meshgrid(input, name=None): """ :alias_main: paddle.meshgrid :alias: paddle.meshgrid,paddle.tensor.meshgrid,paddle.tensor.creation.meshgrid This op takes a list of N tensors as input, each of which is 1-dimensional vector, and creates N-dimensional grids. Args: input(Variable) : tensors (list of tensor): the shapes of input k tensors are (N1,), (N2,),..., (Nk,). Support data types: ``float64``, ``float32``, ``int32``, ``int64``. name (str, optional): The default value is None. Normally there is no need for user to set this property. For more information, please refer to :ref:`api_guide_Name`. Returns: Variable: k tensors. The shape of each tensor is (N1, N2, ..., Nk) Examples: .. code-block:: python import paddle import paddle.fluid as fluid import numpy as np x = fluid.data(name='x', shape=[100], dtype='int32') y = fluid.data(name='y', shape=[200], dtype='int32') input_1 = np.random.randint(0, 100, [100, ]).astype('int32') input_2 = np.random.randint(0, 100, [200, ]).astype('int32') exe = fluid.Executor(place=fluid.CPUPlace()) grid_x, grid_y = paddle.tensor.meshgrid([x, y]) res_1, res_2 = exe.run(fluid.default_main_program(), feed={'x': input_1, 'y': input_2}, fetch_list=[grid_x, grid_y]) #the shape of res_1 is (100, 200) #the shape of res_2 is (100, 200) .. code-block:: python #example 2: in dygraph mode import paddle import paddle.fluid as fluid import numpy as np input_3 = np.random.randint(0, 100, [100, ]).astype('int32') input_4 = np.random.randint(0, 100, [200, ]).astype('int32') with fluid.dygraph.guard(): tensor_3 = fluid.dygraph.to_variable(input_3) tensor_4 = fluid.dygraph.to_variable(input_4) grid_x, grid_y = paddle.tensor.meshgrid([tensor_3, tensor_4]) #the shape of grid_x is (100, 200) #the shape of grid_y is (100, 200) """ if in_dygraph_mode(): num = len(input) out = core.ops.meshgrid(input, num) return out helper = LayerHelper('meshgrid', **locals()) if not isinstance(input, list): raise TypeError("The type of input in meshgrid should be list.") for id, input_ in enumerate(input): check_dtype(input_.dtype, 'create data type', ['float16', 'float32', 'float64', 'int32', 'int64'], 'meshgrid') num = len(input) out = [ helper.create_variable_for_type_inference(dtype=input[i].dtype) for i in range(num) ] helper.append_op(type='meshgrid', inputs={'X': input}, outputs={'Out': out}) return out