# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np from op_test import OpTest class TestSequenceExpand(OpTest): def set_data(self): x = [i / 10.0 for i in range(3)] y = [i / 10.0 for i in range(8)] x_data = np.array(x).reshape(3, 1).astype('float32') y_data = np.array(y).reshape(8, 1).astype('float32') print(x_data) print(y_data) # x_data = np.random.uniform(0.1, 1, [3, 1]).astype('float32') # y_data = np.random.uniform(0.1, 1, [8, 1]).astype('float32') y_lod = [[0, 1, 4, 8]] self.inputs = {'X': x_data, 'Y': (y_data, y_lod)} def compute(self): x = self.inputs['X'] x_data, x_lod = x if type(x) == tuple else (x, None) n = 1 + x_data.shape[0] if not x_lod else len(x_lod[0]) y_data, y_lod = self.inputs['Y'] repeats = [((y_lod[-1][i + 1] - y_lod[-1][i])) for i in range(len(y_lod[-1]) - 1)] out = x_data.repeat(repeats, axis=0) self.outputs = {'Out': out} def setUp(self): self.op_type = 'sequence_expand' self.set_data() self.compute() def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(["X"], "Out") # class TestSequenceExpandCase1(TestSequenceExpand): # def set_data(self): # x_data = np.random.uniform(0.1, 1, [5, 1]).astype('float32') # x_lod = [[0, 2, 5]] # y_data = np.random.uniform(0.1, 1, [13, 1]).astype('float32') # y_lod = [[0, 2, 5], [0, 2, 4, 7, 10, 13]] # self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} # class TestSequenceExpandCase2(TestSequenceExpand): # def set_data(self): # x_data = np.random.uniform(0.1, 1, [1, 2, 2]).astype('float32') # x_lod = [[0, 1]] # y_data = np.random.uniform(0.1, 1, [2, 2, 2]).astype('float32') # y_lod = [[0, 2]] # self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} # class TestSequenceExpandCase3(TestSequenceExpand): # def set_data(self): # x_data = np.random.uniform(0.1, 1, [4, 1]).astype('float32') # x_lod = [[0, 1, 2, 3, 4]] # y_data = np.random.uniform(0.1, 1, [6, 1]).astype('float32') # y_lod = [[0, 2, 4, 4, 6]] # self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} # class TestSequenceExpandCase4(TestSequenceExpand): # def set_data(self): # x_data = np.array( # [0.1, 0.3, 0.2, 0.15, 0.25, 0.2, 0.15, 0.25, 0.1, 0.3]).reshape( # [2, 5]).astype('float32') # x_lod = [[ # 0, # 1, # 2, # ]] # y_data = np.random.uniform(0.1, 1, [2, 1]).astype('float32') # y_lod = [[0, 1, 2], [0, 1, 2]] # self.inputs = {'X': (x_data, x_lod), 'Y': (y_data, y_lod)} if __name__ == '__main__': unittest.main()