# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from paddle.proto.ModelConfig_pb2 import ModelConfig import paddle.trainer_config_helpers as conf_helps import layer as v2_layer import data_type __all__ = ['Topology'] class Topology(object): """ Topology is used to store the information about all layers and network configs. """ def __init__(self, *layers): for layer in layers: if not isinstance(layer, v2_layer.LayerV2): raise ValueError('create must pass a topologies ' 'which type is paddle.layer.Layer') self.layers = layers self.__model_config__ = v2_layer.parse_network(*layers) assert isinstance(self.__model_config__, ModelConfig) def proto(self): return self.__model_config__ def get_layer(self, name): """ get v2.Layer Class instance by layer name :param name: :return: """ result_layer = [] def find_layer_by_name(layer, layer_name): if layer.name == layer_name and len(result_layer) == 0: result_layer.append(layer) for parent_layer in layer.__parent_layers__.values(): find_layer_by_name(parent_layer, layer_name) for layer in self.layers: find_layer_by_name(layer, name) return result_layer[0] def get_data_layer(self): """ get all data layer :return: """ data_layers = [] def find_data_layer(layer): assert isinstance(layer, layer.LayerV2) if isinstance(layer, v2_layer.DataLayerV2): if len( filter(lambda data_layer: data_layer.name == layer.name, data_layers)) == 0: data_layers.append(layer) for parent_layer in layer.__parent_layers__.values(): find_data_layer(parent_layer) for layer in self.layers: find_data_layer(layer) return data_layers def get_layer_proto(self, name): """ get layer by layer name :param name: :return: """ layers = filter(lambda layer: layer.name == name, self.__model_config__.layers) if len(layers) is 1: return layers[0] else: return None def data_type(self): """ get data_type from proto, such as: [('image', dense_vector(768)), ('label', integer_value(10))] the order is the same with __model_config__.input_layer_names """ data_types_lists = [] for layer_name in self.__model_config__.input_layer_names: data_types_lists.append( (layer_name, self.get_layer(layer_name).type)) return data_types_lists if __name__ == '__main__': pixel = v2_layer.data(name='pixel', type=data_type.dense_vector(784)) label = v2_layer.data(name='label', type=data_type.integer_value(10)) hidden = v2_layer.fc(input=pixel, size=100, act=conf_helps.SigmoidActivation()) inference = v2_layer.fc(input=hidden, size=10, act=conf_helps.SoftmaxActivation()) maxid = v2_layer.max_id(input=inference) cost1 = v2_layer.classification_cost(input=inference, label=label) cost2 = v2_layer.cross_entropy_cost(input=inference, label=label) print Topology(cost1).proto() print Topology(cost2).proto() print Topology(cost1, cost2).proto() print Topology(cost2).proto() print Topology(inference, maxid).proto()