# Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. """ IMDB dataset. This module downloads IMDB dataset from http://ai.stanford.edu/%7Eamaas/data/sentiment/. This dataset contains a set of 25,000 highly polar movie reviews for training, and 25,000 for testing. Besides, this module also provides API for building dictionary. """ from __future__ import print_function import paddle.dataset.common import paddle.utils.deprecated as deprecated import collections import tarfile import re import string import six __all__ = ['build_dict', 'train', 'test'] #URL = 'http://ai.stanford.edu/%7Eamaas/data/sentiment/aclImdb_v1.tar.gz' URL = 'https://dataset.bj.bcebos.com/imdb%2FaclImdb_v1.tar.gz' MD5 = '7c2ac02c03563afcf9b574c7e56c153a' def tokenize(pattern): """ Read files that match the given pattern. Tokenize and yield each file. """ with tarfile.open(paddle.dataset.common.download(URL, 'imdb', MD5)) as tarf: # Note that we should use tarfile.next(), which does # sequential access of member files, other than # tarfile.extractfile, which does random access and might # destroy hard disks. tf = tarf.next() while tf != None: if bool(pattern.match(tf.name)): # newline and punctuations removal and ad-hoc tokenization. yield tarf.extractfile(tf).read().rstrip(six.b( "\n\r")).translate( None, six.b(string.punctuation)).lower().split() tf = tarf.next() def build_dict(pattern, cutoff): """ Build a word dictionary from the corpus. Keys of the dictionary are words, and values are zero-based IDs of these words. """ word_freq = collections.defaultdict(int) for doc in tokenize(pattern): for word in doc: word_freq[word] += 1 # Not sure if we should prune less-frequent words here. word_freq = [x for x in six.iteritems(word_freq) if x[1] > cutoff] dictionary = sorted(word_freq, key=lambda x: (-x[1], x[0])) words, _ = list(zip(*dictionary)) word_idx = dict(list(zip(words, six.moves.range(len(words))))) word_idx[''] = len(words) return word_idx @deprecated( since="2.0.0", update_to="paddle.text.datasets.Imdb", reason="Please use new dataset API which supports paddle.io.DataLoader") def reader_creator(pos_pattern, neg_pattern, word_idx): UNK = word_idx[''] INS = [] def load(pattern, out, label): for doc in tokenize(pattern): out.append(([word_idx.get(w, UNK) for w in doc], label)) load(pos_pattern, INS, 0) load(neg_pattern, INS, 1) def reader(): for doc, label in INS: yield doc, label return reader @deprecated( since="2.0.0", update_to="paddle.text.datasets.Imdb", reason="Please use new dataset API which supports paddle.io.DataLoader") def train(word_idx): """ IMDB training set creator. It returns a reader creator, each sample in the reader is an zero-based ID sequence and label in [0, 1]. :param word_idx: word dictionary :type word_idx: dict :return: Training reader creator :rtype: callable """ return reader_creator( re.compile("aclImdb/train/pos/.*\.txt$"), re.compile("aclImdb/train/neg/.*\.txt$"), word_idx) @deprecated( since="2.0.0", update_to="paddle.text.datasets.Imdb", reason="Please use new dataset API which supports paddle.io.DataLoader") def test(word_idx): """ IMDB test set creator. It returns a reader creator, each sample in the reader is an zero-based ID sequence and label in [0, 1]. :param word_idx: word dictionary :type word_idx: dict :return: Test reader creator :rtype: callable """ return reader_creator( re.compile("aclImdb/test/pos/.*\.txt$"), re.compile("aclImdb/test/neg/.*\.txt$"), word_idx) @deprecated( since="2.0.0", update_to="paddle.text.datasets.Imdb", reason="Please use new dataset API which supports paddle.io.DataLoader") def word_dict(): """ Build a word dictionary from the corpus. :return: Word dictionary :rtype: dict """ return build_dict( re.compile("aclImdb/((train)|(test))/((pos)|(neg))/.*\.txt$"), 150) @deprecated( since="2.0.0", update_to="paddle.text.datasets.Imdb", reason="Please use new dataset API which supports paddle.io.DataLoader") def fetch(): paddle.dataset.common.download(URL, 'imdb', MD5)