/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #pragma once #include #include #include #include #include #include #include "paddle/fluid/framework/eigen.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/selected_rows.h" #include "paddle/fluid/operators/math/sampler.h" #include "unsupported/Eigen/CXX11/Tensor" #ifdef PADDLE_WITH_DISTRIBUTE #include "paddle/fluid/operators/distributed/parameter_prefetch.h" #endif namespace paddle { namespace operators { using Tensor = framework::Tensor; using LoDTensor = framework::LoDTensor; using SelectedRows = framework::SelectedRows; using Sampler = math::Sampler; using DDim = framework::DDim; template using EigenMatrix = framework::EigenMatrix; template void PrepareSamples(const framework::ExecutionContext &context, Sampler *sampler) { auto label = context.Input("Label"); const int64_t *label_data = label->data(); auto label_dims = label->dims(); // int num_total_classes = context.Attr("num_total_classes"); // for unitest std::vector custom_neg_classes = context.Attr>("custom_neg_classes"); auto sample_labels = context.Output("SampleLabels"); auto sample_labels_dims = sample_labels->dims(); int64_t *sample_labels_data = sample_labels->mutable_data(context.GetPlace()); int num_label = label_dims.size() == 2 ? label_dims[1] : 1; int index = 0; for (int64_t i = 0; i < label_dims[0]; ++i) { int j = 0; for (; j < num_label; ++j) { sample_labels_data[index++] = label_data[i * num_label + j]; } if (custom_neg_classes.size() > 0) { for (auto label : custom_neg_classes) { sample_labels_data[index++] = label; } } else { for (; j < sample_labels_dims[1]; ++j) { // TODO(wanghaoshuang): support more distribution sampling sample_labels_data[index++] = sampler->Sample(); } } } } template class NCEKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { int sampler_type = context.Attr("sampler"); int seed = context.Attr("seed"); int num_total_classes = context.Attr("num_total_classes"); int num_neg_samples = context.Attr("num_neg_samples"); Sampler *sampler; switch (sampler_type) { case 0: { sampler = new math::UniformSampler(num_total_classes - 1, seed); break; } case 1: { sampler = new math::LogUniformSampler(num_total_classes - 1, seed); break; } case 2: { auto dist_probs = context.Input("CustomDistProbs"); auto dist_alias = context.Input("CustomDistAlias"); auto dist_alias_probs = context.Input("CustomDistAliasProbs"); PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes); PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes); PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes); const float *probs_data = dist_probs->data(); const int *alias_data = dist_alias->data(); const float *alias_probs_data = dist_alias_probs->data(); sampler = new math::CustomSampler(num_total_classes - 1, probs_data, alias_data, alias_probs_data, seed); break; } default: { PADDLE_THROW("Unsupported SamplerType."); } } PrepareSamples(context, sampler); auto sample_labels = context.Output("SampleLabels"); const int64_t *sample_labels_data = sample_labels->data(); auto sample_out = context.Output("SampleLogits"); T *sample_out_data = sample_out->mutable_data(context.GetPlace()); auto label = context.Input("Label"); auto sample_weight = context.Input("SampleWeight"); const T *sample_weight_data = nullptr; if (sample_weight != nullptr) { sample_weight_data = sample_weight->data(); } auto out = context.Output("Cost"); T *out_data = out->mutable_data(context.GetPlace()); int64_t num_true_class = 1; if (label != nullptr) { num_true_class = label->dims()[1]; } int64_t sampled_labels_num = sample_labels->dims()[1]; // T b = 1. / num_total_classes * num_neg_samples; // forward bias auto bias = context.Input("Bias"); if (bias != nullptr) { const T *bias_data = bias->data(); for (int64_t i = 0; i < sample_labels->numel(); ++i) { sample_out_data[i] = bias_data[sample_labels_data[i]]; } } else { for (int64_t i = 0; i < sample_labels->numel(); ++i) { sample_out_data[i] = 0; } } // forward mul auto input_mat = EigenMatrix::From(*(context.Input("Input"))); // for remote prefetch auto epmap = context.Attr>("epmap"); if (!epmap.empty()) { // if epmap is not empty, then the parameter will be fetched from remote // parameter // server std::vector labels; for (int64_t i = 0; i < sample_labels->numel(); ++i) { labels.push_back(sample_labels_data[i]); } std::set st(labels.begin(), labels.end()); labels.assign(st.begin(), st.end()); auto &local_scope = context.scope().NewScope(); auto height_sections = context.Attr>("height_sections"); auto table_names = context.Attr>("table_names"); auto *ids = local_scope.Var("Ids"); auto *x_tensor = ids->GetMutable(); x_tensor->mutable_data( framework::make_ddim({static_cast(labels.size()), 1}), context.GetPlace()); // copy. std::memcpy(x_tensor->data(), labels.data(), labels.size() * sizeof(int64_t)); local_scope.Var("Weight@Local") ->GetMutable() ->mutable_data(context.GetPlace()); #ifdef PADDLE_WITH_DISTRIBUTE operators::distributed::prefetch("Ids", "Weight@Local", table_names, epmap, height_sections, context, &local_scope); #else PADDLE_THROW( "paddle is not compiled with distribute support, can not do " "parameter prefetch!"); #endif auto weight_mat = EigenMatrix::From( (local_scope.Var("Weight@Local")->Get())); for (int64_t i = 0; i < sample_labels->numel(); ++i) { std::vector::iterator it = std::find(labels.begin(), labels.end(), sample_labels_data[i]); int idx = std::distance(labels.begin(), it); Eigen::Tensor result = (input_mat.chip(static_cast(i / sample_labels->dims()[1]), 0) * weight_mat.chip(idx, 0)) .sum(); sample_out_data[i] += result(0); sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i]))); } context.scope().DeleteScope(&local_scope); } else { auto weight_mat = EigenMatrix::From(*(context.Input("Weight"))); for (int64_t i = 0; i < sample_labels->numel(); ++i) { Eigen::Tensor result = (input_mat.chip(static_cast(i / sample_labels->dims()[1]), 0) * weight_mat.chip(sample_labels_data[i], 0)) .sum(); sample_out_data[i] += result(0); sample_out_data[i] = (1. / (1. + exp(-sample_out_data[i]))); } } // forward cost for (int64_t i = 0; i < sample_labels->dims()[0]; ++i) { out_data[i] = 0; T w = sample_weight == nullptr ? 1. : sample_weight_data[i]; for (int64_t j = 0; j < sampled_labels_num; ++j) { int64_t target = sample_labels_data[i * sampled_labels_num + j]; T o = sample_out_data[i * sampled_labels_num + j]; float b = sampler->Probability(target) * num_neg_samples; T cost = (j < num_true_class) ? -log(o / (o + b)) : -log(b / (o + b)); out_data[i] += w * cost; } } delete sampler; } }; template class NCEGradKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext &context) const override { auto d_out = context.Input(framework::GradVarName("Cost")); const T *d_out_data = d_out->data(); auto label = context.Input("Label"); auto sample_out = context.Input("SampleLogits"); const T *sample_out_data = sample_out->data(); auto sample_labels = context.Input("SampleLabels"); const int64_t *sample_labels_data = sample_labels->data(); auto sample_weight = context.Input("SampleWeight"); const T *sample_weight_data = nullptr; if (sample_weight != nullptr) { sample_weight_data = sample_weight->data(); } int num_neg_samples = context.Attr("num_neg_samples"); int num_total_classes = context.Attr("num_total_classes"); int num_true_class = 1; if (label != nullptr) { num_true_class = label->dims()[1]; } int sampler_type = context.Attr("sampler"); int seed = context.Attr("seed"); Sampler *sampler; switch (sampler_type) { case 0: { sampler = new math::UniformSampler(num_total_classes - 1, seed); break; } case 1: { sampler = new math::LogUniformSampler(num_total_classes - 1, seed); break; } case 2: { auto dist_probs = context.Input("CustomDistProbs"); auto dist_alias = context.Input("CustomDistAlias"); auto dist_alias_probs = context.Input("CustomDistAliasProbs"); PADDLE_ENFORCE_EQ(dist_probs->numel(), num_total_classes); PADDLE_ENFORCE_EQ(dist_alias->numel(), num_total_classes); PADDLE_ENFORCE_EQ(dist_alias_probs->numel(), num_total_classes); const float *probs_data = dist_probs->data(); const int *alias_data = dist_alias->data(); const float *alias_probs_data = dist_alias_probs->data(); sampler = new math::CustomSampler(num_total_classes - 1, probs_data, alias_data, alias_probs_data, seed); break; } default: { PADDLE_THROW("Unsupported SamplerType."); } } // T b = 1. / num_total_classes * num_neg_samples; Tensor sample_grad; // tmp tensor T *sample_grad_data = sample_grad.mutable_data(sample_labels->dims(), context.GetPlace()); // backward cost for (int64_t i = 0; i < sample_labels->numel(); ++i) { int64_t label_idx = i % sample_labels->dims()[1]; int64_t sample_idx = i / sample_labels->dims()[1]; float b = sampler->Probability(sample_labels_data[i]) * num_neg_samples; T o = sample_out_data[i]; T w = sample_weight == nullptr ? 1 : sample_weight_data[sample_idx]; sample_grad_data[i] = label_idx < num_true_class ? w * (b / (o + b)) * (o - 1) : w * (o * (1 - o) / (o + b)); sample_grad_data[i] *= d_out_data[sample_idx]; } // get d_bias auto d_bias = context.Output(framework::GradVarName("Bias")); if (d_bias != nullptr) { T *d_bias_data = d_bias->mutable_data(context.GetPlace()); std::fill(d_bias_data, d_bias_data + d_bias->numel(), 0.0); for (int64_t i = 0; i < sample_labels->numel(); ++i) { d_bias_data[sample_labels_data[i]] += sample_grad_data[i]; } } bool is_sparse = context.Attr("is_sparse"); if (!is_sparse) { // get d_w auto d_w = context.Output(framework::GradVarName("Weight")); if (d_w != nullptr) { auto d_w_data = d_w->mutable_data(context.GetPlace()); std::fill(d_w_data, d_w_data + d_w->numel(), 0.0); auto d_w_matrix = EigenMatrix::From(*d_w); auto x_matrix = EigenMatrix::From(*(context.Input("Input"))); for (int64_t i = 0; i < sample_labels->numel(); ++i) { d_w_matrix.chip(sample_labels_data[i], 0) += x_matrix.chip(static_cast(i / sample_labels->dims()[1]), 0) * sample_grad_data[i]; } } } else { std::vector labels; for (int64_t i = 0; i < sample_labels->numel(); ++i) { labels.push_back(sample_labels_data[i]); } std::set st(labels.begin(), labels.end()); labels.assign(st.begin(), st.end()); auto *table_var = context.InputVar("Weight"); DDim table_dim; if (table_var->IsType()) { table_dim = context.Input("Weight")->dims(); } else if (table_var->IsType()) { auto *table_t = context.Input("Weight"); table_dim = table_t->value().dims(); } else { PADDLE_THROW( "The parameter Weight of a NCE_OP " "must be either LoDTensor or SelectedRows"); } auto d_w = context.Output(framework::GradVarName("Weight")); d_w->set_rows(labels); d_w->set_height(table_dim[0]); auto *d_table_value = d_w->mutable_value(); d_table_value->Resize( {static_cast(labels.size()), table_dim[1]}); auto d_w_data = d_table_value->mutable_data(context.GetPlace()); std::fill(d_w_data, d_w_data + d_table_value->numel(), 0.0); auto d_w_matrix = EigenMatrix::From(*d_table_value); auto x_matrix = EigenMatrix::From(*(context.Input("Input"))); for (int64_t i = 0; i < sample_labels->numel(); ++i) { d_w_matrix.chip(d_w->Index(sample_labels_data[i]), 0) += x_matrix.chip(static_cast(i / sample_labels->dims()[1]), 0) * sample_grad_data[i]; } } // get d_x auto d_x = context.Output(framework::GradVarName("Input")); if (d_x != nullptr) { auto *d_x_data = d_x->mutable_data(context.GetPlace()); std::fill(d_x_data, d_x_data + d_x->numel(), 0.0); auto d_x_matrix = EigenMatrix::From(*d_x); auto w_matrix = EigenMatrix::From(*(context.Input("Weight"))); for (int64_t i = 0; i < sample_labels->numel(); ++i) { d_x_matrix.chip(static_cast(i / sample_labels->dims()[1]), 0) += w_matrix.chip(sample_labels_data[i], 0) * sample_grad_data[i]; } } delete sampler; } }; } // namespace operators } // namespace paddle