# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import paddle.fluid as fluid import paddle.fluid.core as core import os import unittest import paddle.fluid.layers as layers from paddle.fluid.layers.nn import _pull_box_sparse class TestDataFeed(unittest.TestCase): """ TestBaseCase(Merge PV) """ def setUp(self): self.batch_size = 10 self.pv_batch_size = 10 self.enable_pv_merge = True self.merge_by_sid = True def set_data_config(self): self.dataset = fluid.DatasetFactory().create_dataset("BoxPSDataset") self.dataset.set_feed_type("PaddleBoxDataFeed") self.dataset.set_parse_logkey(True) self.dataset.set_thread(1) self.dataset.set_enable_pv_merge(self.enable_pv_merge) self.dataset.set_batch_size(self.batch_size) if self.enable_pv_merge: self.dataset.set_merge_by_sid(self.merge_by_sid) self.dataset.set_rank_offset("rank_offset") self.dataset.set_pv_batch_size(self.pv_batch_size) def test_pboxdatafeed(self): self.run_dataset(False) def test_pboxdatafeed(self): self.run_dataset(True) def run_dataset(self, is_cpu): x = fluid.layers.data(name='x', shape=[1], dtype='int64', lod_level=0) y = fluid.layers.data(name='y', shape=[1], dtype='int64', lod_level=0) rank_offset = fluid.layers.data( name="rank_offset", shape=[-1, 7], dtype="int32", lod_level=0, append_batch_size=False) emb_x, emb_y = _pull_box_sparse([x, y], size=2) emb_xp = _pull_box_sparse(x, size=2) concat = layers.concat([emb_x, emb_y], axis=1) fc = layers.fc(input=concat, name="fc", size=1, num_flatten_dims=1, bias_attr=False) loss = layers.reduce_mean(fc) place = fluid.CPUPlace() if is_cpu or not core.is_compiled_with_cuda( ) else fluid.CUDAPlace(0) exe = fluid.Executor(place) with open("test_run_with_dump_a.txt", "w") as f: data = "1 1702f830eee19501ad7429505f714c1d 1 1 1 9\n" data += "1 1702f830eee19502ad7429505f714c1d 1 2 1 8\n" data += "1 1702f830eee19503ad7429505f714c1d 1 3 1 7\n" data += "1 1702f830eee0de01ad7429505f714c2d 1 4 1 6\n" data += "1 1702f830eee0df01ad7429505f714c3d 1 5 1 5\n" data += "1 1702f830eee0df02ad7429505f714c3d 1 6 1 4\n" f.write(data) with open("test_run_with_dump_b.txt", "w") as f: data = "1 1702f830fff22201ad7429505f715c1d 1 1 1 1\n" data += "1 1702f830fff22202ad7429505f715c1d 1 2 1 2\n" data += "1 1702f830fff22203ad7429505f715c1d 1 3 1 3\n" data += "1 1702f830fff22101ad7429505f714ccd 1 4 1 4\n" data += "1 1702f830fff22102ad7429505f714ccd 1 5 1 5\n" data += "1 1702f830fff22103ad7429505f714ccd 1 6 1 6\n" data += "1 1702f830fff22104ad7429505f714ccd 1 6 1 7\n" f.write(data) self.set_data_config() self.dataset.set_use_var([x, y]) self.dataset.set_filelist( ["test_run_with_dump_a.txt", "test_run_with_dump_b.txt"]) optimizer = fluid.optimizer.SGD(learning_rate=0.5) optimizer = fluid.optimizer.PipelineOptimizer( optimizer, cut_list=[], place_list=[place], concurrency_list=[1], queue_size=1, sync_steps=-1) optimizer.minimize(loss) exe.run(fluid.default_startup_program()) self.dataset.set_current_phase(1) self.dataset.load_into_memory() self.dataset.preprocess_instance() self.dataset.begin_pass() pv_num = self.dataset.get_pv_data_size() exe.train_from_dataset( program=fluid.default_main_program(), dataset=self.dataset, print_period=1) self.dataset.set_current_phase(0) self.dataset.postprocess_instance() exe.train_from_dataset( program=fluid.default_main_program(), dataset=self.dataset, print_period=1) self.dataset.end_pass(True) os.remove("test_run_with_dump_a.txt") os.remove("test_run_with_dump_b.txt") class TestDataFeed2(TestDataFeed): """ TestBaseCase(Merge PV not merge by sid) """ def setUp(self): self.batch_size = 10 self.pv_batch_size = 10 self.enable_pv_merge = True self.merge_by_sid = False class TestDataFeed3(TestDataFeed): """ TestBaseCase(Not Merge PV) """ def setUp(self): self.batch_size = 10 self.pv_batch_size = 10 self.enable_pv_merge = False if __name__ == '__main__': unittest.main()