import paddle.v2.fluid.core as core from contextlib import contextmanager import os __all__ = ['CudaProfiler'] NVPROF_CONFIG = [ "gpustarttimestamp", "gpuendtimestamp", "gridsize3d", "threadblocksize", "dynsmemperblock", "stasmemperblock", "regperthread", "memtransfersize", "memtransferdir", "memtransferhostmemtype", "streamid", "cacheconfigrequested", "cacheconfigrequested", "cacheconfigrequested", "enableonstart 0", "conckerneltrace", "active_warps", "active_warps", ] @contextmanager def cuda_profiler(output_file, output_mode=None, config=None): """The CUDA profiler. This fuctions is used to profile CUDA program by CUDA runtime application programming interface. The profiling result will be written into `output_file` with Key-Value pair format or Comma separated values format. The user can set the output mode by `output_mode` argument and set the counters/options for profiling by `config` argument. The default config is ['gpustarttimestamp', 'gpustarttimestamp', 'gridsize3d', 'threadblocksize', 'streamid', 'enableonstart 0', 'conckerneltrace']. Args: output_file (string) : The output file name, the result will be written into this file. output_mode (string) : The output mode has Key-Value pair format and Comma separated values format. It should be 'kvp' or 'csv'. config (list of string) : The profiler options and counters can refer to "Compute Command Line Profiler User Guide". """ if output_mode is None: output_mode = 'csv' if output_mode not in ['kvp', 'csv']: raise ValueError("The output mode must be 'kvp' or 'csv'.") config = NVPROF_CONFIG if config is None else config config_file = 'nvprof_config_file' with open(config_file, 'wb') as fp: fp.writelines(["%s\n" % item for item in config]) core.nvprof_init(output_file, output_mode, config_file) # Enables profiler collection by the active CUDA profiling tool. core.nvprof_start() yield # Disables profiler collection. core.nvprof_stop() os.remove(config_file)