// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/grid_sample_grad_kernel.h" #include "paddle/phi/backends/xpu/enforce_xpu.h" #include "paddle/phi/core/kernel_registry.h" namespace phi { template void GridSampleGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& grid, const DenseTensor& out_grid, const std::string& mode, const std::string& padding_mode, bool align_corners, DenseTensor* x_grad, DenseTensor* grid_grad) { PADDLE_ENFORCE_EQ( x.dims().size(), 4, phi::errors::InvalidArgument( ("XPU is only support input_dims == 4 in grid_sample_grad op."))); const int64_t n = grid.dims()[0]; const int64_t out_h = grid.dims()[1]; const int64_t out_w = grid.dims()[2]; const int64_t c = x.dims()[1]; const int64_t in_h = x.dims()[2]; const int64_t in_w = x.dims()[3]; x_grad->Resize({n, c, in_h, in_w}); T* x_grad_ptr = dev_ctx.template Alloc(x_grad); T* grid_grad_ptr = nullptr; if (grid_grad != nullptr) { grid_grad->Resize({n, out_h, out_w, 2}); grid_grad_ptr = dev_ctx.template Alloc(grid_grad); } bool is_nearest = false; if (mode == "nearest") { is_nearest = true; } int64_t padding_mode_type = 0; if (padding_mode == "border") { padding_mode_type = 1; } else if (padding_mode == "reflection") { padding_mode_type = 2; } int r = xpu::grid_sample_grad(dev_ctx.x_context(), x.data(), grid.data(), out_grid.data(), x_grad_ptr, grid_grad_ptr, n, c, in_h, in_w, out_h, out_w, is_nearest, align_corners, padding_mode_type, true); PADDLE_ENFORCE_XDNN_SUCCESS(r, "grid_sample_grad"); } } // namespace phi PD_REGISTER_KERNEL( grid_sample_grad, XPU, ALL_LAYOUT, phi::GridSampleGradKernel, float) {}