import numpy as np import paddle.v2 as paddle import paddle.v2.fluid.core as core import paddle.v2.fluid.framework as framework import paddle.v2.fluid.layers as layers from paddle.v2.fluid.executor import Executor from paddle.v2.fluid.optimizer import SGDOptimizer PASS_NUM = 100 EMBED_SIZE = 32 HIDDEN_SIZE = 256 N = 5 BATCH_SIZE = 32 IS_SPARSE = True word_dict = paddle.dataset.imikolov.build_dict() dict_size = len(word_dict) first_word = layers.data(name='firstw', shape=[1], dtype='int64') second_word = layers.data(name='secondw', shape=[1], dtype='int64') third_word = layers.data(name='thirdw', shape=[1], dtype='int64') forth_word = layers.data(name='forthw', shape=[1], dtype='int64') next_word = layers.data(name='nextw', shape=[1], dtype='int64') embed_first = layers.embedding( input=first_word, size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr={'name': 'shared_w'}) embed_second = layers.embedding( input=second_word, size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr={'name': 'shared_w'}) embed_third = layers.embedding( input=third_word, size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr={'name': 'shared_w'}) embed_forth = layers.embedding( input=forth_word, size=[dict_size, EMBED_SIZE], dtype='float32', is_sparse=IS_SPARSE, param_attr={'name': 'shared_w'}) concat_embed = layers.concat( input=[embed_first, embed_second, embed_third, embed_forth], axis=1) hidden1 = layers.fc(input=concat_embed, size=HIDDEN_SIZE, act='sigmoid') predict_word = layers.fc(input=hidden1, size=dict_size, act='softmax') cost = layers.cross_entropy(input=predict_word, label=next_word) avg_cost = layers.mean(x=cost) sgd_optimizer = SGDOptimizer(learning_rate=0.001) opts = sgd_optimizer.minimize(avg_cost) train_reader = paddle.batch( paddle.dataset.imikolov.train(word_dict, N), BATCH_SIZE) place = core.CPUPlace() exe = Executor(place) # fix https://github.com/PaddlePaddle/Paddle/issues/5434 then remove # below exit line. exit(0) exe.run(framework.default_startup_program()) for pass_id in range(PASS_NUM): for data in train_reader(): input_data = [[data_idx[idx] for data_idx in data] for idx in xrange(5)] input_data = map(lambda x: np.array(x).astype("int64"), input_data) input_data = map(lambda x: np.expand_dims(x, axis=1), input_data) first_data = input_data[0] first_tensor = core.LoDTensor() first_tensor.set(first_data, place) second_data = input_data[1] second_tensor = core.LoDTensor() second_tensor.set(second_data, place) third_data = input_data[2] third_tensor = core.LoDTensor() third_tensor.set(third_data, place) forth_data = input_data[3] forth_tensor = core.LoDTensor() forth_tensor.set(forth_data, place) next_data = input_data[4] next_tensor = core.LoDTensor() next_tensor.set(next_data, place) outs = exe.run(framework.default_main_program(), feed={ 'firstw': first_tensor, 'secondw': second_tensor, 'thirdw': third_tensor, 'forthw': forth_tensor, 'nextw': next_tensor }, fetch_list=[avg_cost]) out = np.array(outs[0]) if out[0] < 10.0: exit(0) # if avg cost less than 10.0, we think our code is good. exit(1)