// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/operators/cumprod_op.h" namespace paddle { namespace operators { class CumprodOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "Cumprod"); OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "Cumprod"); ctx->ShareDim("X", "Out"); ctx->ShareLoD("X", "Out"); } }; class CumprodOpMaker : public framework::OpProtoAndCheckerMaker { public: void Make() override { AddInput("X", "(Tensor), The input tensor of cumprod op."); AddOutput("Out", "(Tensor), The output tensor of cumprod op."); AddAttr( "dim", "(int), The dim along which the input tensors will be cumproded"); AddComment( R"DOC(Cumprod operator. Return the cumprod results of the input elements along the dim. For example, if input X is a tensor with rank 1 and N elements, the output will also be a tensor with rank 1 and N elements, and elements y[i] = x[0] * x[1] * x[2] *...* x[i] (0<=i class CumprodGradOpMaker : public framework::SingleGradOpMaker { public: using framework::SingleGradOpMaker::SingleGradOpMaker; protected: void Apply(GradOpPtr grad_op) const override { grad_op->SetType("cumprod_grad"); grad_op->SetInput("X", this->Input("X")); grad_op->SetInput("Out", this->Output("Out")); grad_op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out")); grad_op->SetOutput(framework::GradVarName("X"), this->InputGrad("X")); grad_op->SetAttrMap(this->Attrs()); } }; class CumprodGradOp : public framework::OperatorWithKernel { public: using framework::OperatorWithKernel::OperatorWithKernel; void InferShape(framework::InferShapeContext *ctx) const override { OP_INOUT_CHECK(ctx->HasInput("X"), "Input", "X", "CumprodGrad"); OP_INOUT_CHECK(ctx->HasInput("Out"), "Input", "Out", "CumprodGrad"); OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Out")), "Input", "framework::GradVarName(\"Out\")", "CumprodGrad"); OP_INOUT_CHECK(ctx->HasOutput(framework::GradVarName("X")), "Output", "framework::GradVarName(\"X\")", "CumprodGrad"); ctx->ShareDim(framework::GradVarName("Out"), framework::GradVarName("X")); ctx->ShareLoD(framework::GradVarName("Out"), framework::GradVarName("X")); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; REGISTER_OPERATOR(cumprod, ops::CumprodOp, ops::CumprodOpMaker, ops::CumprodGradOpMaker, ops::CumprodGradOpMaker); REGISTER_OPERATOR(cumprod_grad, ops::CumprodGradOp); REGISTER_OP_CPU_KERNEL( cumprod, ops::CumprodOpCPUKernel, ops::CumprodOpCPUKernel, ops::CumprodOpCPUKernel, ops::CumprodOpCPUKernel, ops::CumprodOpCPUKernel>, ops::CumprodOpCPUKernel>); REGISTER_OP_CPU_KERNEL( cumprod_grad, ops::CumprodGradOpCPUKernel, ops::CumprodGradOpCPUKernel, ops::CumprodGradOpCPUKernel, ops::CumprodGradOpCPUKernel, ops::CumprodGradOpCPUKernel>, ops::CumprodGradOpCPUKernel>);