// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/fluid/imperative/prepared_operator.h" #include "paddle/fluid/eager/eager_tensor.h" #include "paddle/fluid/framework/data_type_transform.h" #include "paddle/fluid/framework/details/nan_inf_utils.h" #include "paddle/fluid/imperative/infer_shape_context.h" #include "paddle/fluid/imperative/tracer.h" #include "paddle/phi/common/int_array.h" #include "paddle/phi/common/scalar.h" #include "paddle/utils/small_vector.h" #ifdef PADDLE_WITH_XPU #include "paddle/fluid/platform/device/xpu/xpu_op_list.h" #endif #ifdef PADDLE_WITH_MKLDNN #include "paddle/fluid/platform/mkldnn_op_list.h" #endif #include "paddle/fluid/framework/library_type.h" #include "paddle/fluid/platform/device/gpu/gpu_info.h" #include "paddle/fluid/platform/profiler/event_tracing.h" #include "paddle/fluid/platform/profiler/supplement_tracing.h" DECLARE_bool(check_nan_inf); DECLARE_bool(benchmark); DECLARE_bool(run_kp_kernel); namespace paddle { namespace imperative { static const phi::Kernel empty_kernel; static const framework::RuntimeContext empty_ctx({}, {}); static const framework::Scope empty_scope; const phi::KernelFactory& PreparedOp::phi_kernel_factory = phi::KernelFactory::Instance(); const phi::OpUtilsMap& PreparedOp::phi_op_utils_map = phi::OpUtilsMap::Instance(); const phi::DefaultKernelSignatureMap& PreparedOp::default_phi_kernel_sig_map = phi::DefaultKernelSignatureMap::Instance(); const std::shared_ptr& GetVariableWrapper( const std::shared_ptr& var) { return var->SharedVar(); } const std::shared_ptr& GetVariableWrapper( const std::shared_ptr& var) { return var; } const phi::DenseTensor* GetTensorFromVar(const framework::Variable& var) { if (var.IsType()) { return &(var.Get()); } else if (var.IsType()) { return &(var.Get().value()); } else { return nullptr; } } template void HandleComplexGradToRealGrad(const NameVarMap& outs) { for (auto& pair : outs) { for (auto& var : pair.second) { if (var == nullptr) { continue; } if (var->ForwardDataType() == static_cast(-1)) { VLOG(6) << "Var (" << var->Name() << ")'s forward data type is not set."; continue; } if (!framework::IsComplexType(var->DataType()) || framework::IsComplexType(var->ForwardDataType())) { continue; } const auto* tensor = GetTensorFromVar(var->Var()); if (tensor && tensor->IsInitialized()) { VLOG(6) << "Transform " << framework::DataTypeToString(var->DataType()) << " var `" << var->Name() << "` to " << framework::DataTypeToString(var->ForwardDataType()) << " real var in dynamic graph."; phi::DenseTensor out; framework::TransComplexToReal( var->ForwardDataType(), var->DataType(), *tensor, &out); SetTensorToVariable(var->Var(), out, var->MutableVar()); } } } } template <> void HandleComplexGradToRealGrad( const NameVarMap& outs) { // TODO(jiabin): Support Complex here. } void TestHandleComplexGradToRealGradEager( const NameVarMap& outs) { HandleComplexGradToRealGrad(outs); } PreparedOp::PreparedOp(const framework::OperatorBase& op, const framework::RuntimeContext& ctx, const framework::OpKernelType& kernel_type, const framework::OperatorWithKernel::OpKernelFunc& func, const phi::ArgumentMappingFn* arg_map_fn, const phi::KernelSignature* default_kernel_signature, platform::DeviceContext* dev_ctx) : op_(op), ctx_(ctx), kernel_type_(kernel_type), func_(func), dev_ctx_(dev_ctx), arg_map_fn_(arg_map_fn), default_kernel_signature_(default_kernel_signature), phi_kernel_(empty_kernel) {} PreparedOp::PreparedOp(const framework::OperatorBase& op, const framework::RuntimeContext& ctx, const framework::OpKernelType& kernel_type, const phi::ArgumentMappingFn* arg_map_fn, const phi::KernelSignature* default_kernel_signature, phi::KernelSignature&& kernel_signature, const phi::Kernel& phi_kernel, platform::DeviceContext* dev_ctx) : op_(op), ctx_(ctx), kernel_type_(kernel_type), func_(nullptr), dev_ctx_(dev_ctx), run_phi_kernel_(true), arg_map_fn_(arg_map_fn), default_kernel_signature_(default_kernel_signature), kernel_signature_(std::move(kernel_signature)), phi_kernel_(phi_kernel) {} #ifdef PADDLE_WITH_MLU static void tokenize(const std::string& ops, char delim, std::unordered_set* op_set) { std::string::size_type beg = 0; for (uint64_t end = 0; (end = ops.find(delim, end)) != std::string::npos; ++end) { op_set->insert(ops.substr(beg, end - beg)); beg = end + 1; } op_set->insert(ops.substr(beg)); } static bool is_in_mlu_black_list(const std::string& op_name) { static bool inited = false; static std::unordered_set mlu_black_list; static std::mutex s_mtx; if (!inited) { std::lock_guard guard(s_mtx); if (!inited) { if (std::getenv("MLU_BLACK_LIST") != nullptr) { std::string ops(std::getenv("MLU_BLACK_LIST")); tokenize(ops, ',', &mlu_black_list); } inited = true; VLOG(3) << "MLU Black List: "; for (auto iter = mlu_black_list.begin(); iter != mlu_black_list.end(); ++iter) { VLOG(3) << *iter << " "; } } } if (mlu_black_list.find(op_name) != mlu_black_list.end()) { return true; } return false; } #endif template PreparedOp PrepareImpl( const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, const platform::Place& place, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs, const phi::KernelFactory& phi_kernel_factory, const phi::OpUtilsMap& phi_op_utils_map, const phi::DefaultKernelSignatureMap& default_phi_kernel_sig_map) { platform::DeviceContextPool& pool = platform::DeviceContextPool::Instance(); auto* dev_ctx = pool.Get(place); #ifdef PADDLE_WITH_MKLDNN // MKLDNN variant of code reads attributes in some of GetKernelTypeForVar and // GetKernelType functions, so we need to copy the attributes there. // Const qualifier of Attrs had to be discarded to overwrite it. if (FLAGS_use_mkldnn) { auto& mutable_op_attrs = const_cast(op.Attrs()); mutable_op_attrs = default_attrs; for (auto& attr : attrs) { mutable_op_attrs[attr.first] = attr.second; } } #endif // NOTE(zhiqiu): for kernels on given device, for example NPU, the order to // choose is: // phi npu kernel > fluid npu kernel > phi cpu kernel > fluid cpu kernel // 1. get expected kernel key auto dygraph_exe_ctx = DygraphExecutionContext( op, empty_scope, *dev_ctx, empty_ctx, ins, outs, attrs, default_attrs); auto expected_kernel_key = op.GetExpectedKernelType(dygraph_exe_ctx); const phi::KernelSignature* default_kernel_signature = nullptr; phi::KernelSignature kernel_signature; phi::KernelKey phi_kernel_key; std::string phi_kernel_name; // NOTE(jiahongyu): The registered MKLDNN kernel have library_type = // LibraryType::kMKLDNN and data_layout_ = DataLayout::kMKLDNN. But the default // values are kPlain, so we need to modify the library_type and data_layout_ // here. There are three statements in if condition: // 1. Whether mkldnn kernel fallbacks to plain kernel; // 2. Whether this op has specific implementation; // 3. Whether mkldnn kernel can be used. #ifdef PADDLE_WITH_MKLDNN if (!op.DnnFallback() && !paddle::platform::in_mkldnn_white_list(op.Type()) && op.CanMKLDNNBeUsed(dygraph_exe_ctx, expected_kernel_key.data_type_)) { expected_kernel_key.library_type_ = framework::LibraryType::kMKLDNN; expected_kernel_key.data_layout_ = framework::DataLayout::kMKLDNN; } #endif #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) if (op.CanCUDNNBeUsed(dygraph_exe_ctx, expected_kernel_key.data_type_)) { expected_kernel_key.library_type_ = framework::LibraryType::kCUDNN; } #endif #if defined(PADDLE_WITH_XPU) bool is_xpu_unsupport = paddle::platform::is_xpu_place(expected_kernel_key.place_) && !paddle::platform::is_xpu_support_op(op.Type(), expected_kernel_key) || paddle::platform::is_in_xpu_black_list(op.Type()); #endif #ifdef PADDLE_WITH_MLU if (is_in_mlu_black_list(op.Type())) { expected_kernel_key.place_ = platform::CPUPlace(); } #endif bool has_phi_kernel = false; const auto* arg_map_fn = phi_op_utils_map.GetArgumentMappingFn(op.Type()); if (arg_map_fn) { has_phi_kernel = true; kernel_signature = (*arg_map_fn)( framework::ExecutionArgumentMappingContext(dygraph_exe_ctx)); } else { default_kernel_signature = default_phi_kernel_sig_map.GetNullable(op.Type()); if (default_kernel_signature) { has_phi_kernel = true; kernel_signature = *default_kernel_signature; } } if (has_phi_kernel) { VLOG(6) << kernel_signature; phi_kernel_name = kernel_signature.name; // NOTE(Liu-xiandong): The register kernel used KP have library_type[KP], // But the default library_type is Plain, so we need to modify the // library_type here, otherwise it can't work. #ifdef PADDLE_WITH_XPU_KP if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) { bool use_xpu_kp_kernel_rt = FLAGS_run_kp_kernel && paddle::platform::is_xpu_kp_support_op( op.Type(), expected_kernel_key); bool use_xpu_kp_kernel_debug = paddle::platform::is_in_xpu_kpwhite_list(op.Type()); if (use_xpu_kp_kernel_rt) { VLOG(3) << "phi xpu_kp using rt mode "; } if (use_xpu_kp_kernel_debug) { VLOG(3) << "phi xpu_kp using debug mode "; } bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug); if (is_xpu_kp_support) { auto expected_kernel_key_library_type = expected_kernel_key.library_type_; expected_kernel_key.library_type_ = paddle::framework::LibraryType::kKP; VLOG(3) << "modifing XPU KP kernel: " << phi_kernel_name << ", using_kernel_key:" << expected_kernel_key; phi::KernelKey try_phi_kernel_key = TransOpKernelTypeToPhiKernelKey(expected_kernel_key); if (!phi_kernel_factory.HasKernel(phi_kernel_name, try_phi_kernel_key)) { expected_kernel_key.library_type_ = expected_kernel_key_library_type; VLOG(3) << "modify XPU KP kernel: " << phi_kernel_name << " in dynamic graph is failed " << expected_kernel_key; } else { VLOG(3) << "modify XPU KP kernel: " << phi_kernel_name << " in dynamic graph is succeed " << expected_kernel_key; } } } #endif phi_kernel_key = TransOpKernelTypeToPhiKernelKey(expected_kernel_key); auto& phi_kernel = phi_kernel_factory.SelectKernel(phi_kernel_name, phi_kernel_key); if (phi_kernel.IsValid() #if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP) && !is_xpu_unsupport #endif ) { VLOG(6) << "Dynamic mode PrepareImpl - kernel name: " << phi_kernel_name << " | kernel key: " << phi_kernel_key << " | kernel: " << phi_kernel; if (expected_kernel_key.place_ != place) { dev_ctx = pool.Get(expected_kernel_key.place_); } return PreparedOp(op, empty_ctx, expected_kernel_key, arg_map_fn, default_kernel_signature, std::move(kernel_signature), phi_kernel, dev_ctx); } else { VLOG(6) << "Dynamic mode ChoosePhiKernel - kernel `" << phi_kernel_name << "` not found."; } } // 2. check if op[type] has kernel registered. auto& all_op_kernels = op.AllOpKernels(); auto kernels_iter = all_op_kernels.find(op.Type()); // NOTE(Liu-xiandong): If we can't find heterogeneous kernel in phi, // we need to select the heterogeneous kernel in fluid, but the kernel // registered in KP use library_type[KP], we need to modify it. #ifdef PADDLE_WITH_XPU_KP bool use_xpu_kp_kernel_rt = paddle::platform::is_xpu_place(expected_kernel_key.place_) && FLAGS_run_kp_kernel && paddle::platform::is_xpu_kp_support_op(op.Type(), expected_kernel_key); bool use_xpu_kp_kernel_debug = paddle::platform::is_xpu_place(expected_kernel_key.place_) && paddle::platform::is_in_xpu_kpwhite_list(op.Type()); bool is_xpu_kp_support = (use_xpu_kp_kernel_rt || use_xpu_kp_kernel_debug); if (is_xpu_kp_support) { expected_kernel_key.library_type_ = paddle::framework::LibraryType::kKP; } #endif if ((kernels_iter == all_op_kernels.end() || kernels_iter->second.find(expected_kernel_key) == kernels_iter->second.end()) #if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP) || is_xpu_unsupport #endif #if defined(PADDLE_WITH_XPU_KP) || (is_xpu_unsupport && !is_xpu_kp_support) #endif ) { if (has_phi_kernel) { auto phi_cpu_kernel_key = FallBackToCpu(expected_kernel_key, phi_kernel_key, op); auto& phi_cpu_kernel = phi_kernel_factory.SelectKernel(phi_kernel_name, phi_cpu_kernel_key); if (phi_cpu_kernel.IsValid()) { VLOG(6) << "Dynamic mode PrepareImpl - kernel name: " << phi_kernel_name << " | kernel key: " << phi_cpu_kernel_key << " | kernel: " << phi_cpu_kernel; auto* cpu_ctx = pool.Get(paddle::platform::CPUPlace()); return PreparedOp( op, empty_ctx, framework::TransPhiKernelKeyToOpKernelType(phi_cpu_kernel_key), arg_map_fn, default_kernel_signature, std::move(kernel_signature), phi_cpu_kernel, cpu_ctx); } } } PADDLE_ENFORCE_NE( kernels_iter, all_op_kernels.end(), platform::errors::NotFound( "There are no kernels which are registered in the %s operator.", op.Type())); auto& kernels = kernels_iter->second; auto kernel_iter = kernels.find(expected_kernel_key); #if defined(PADDLE_WITH_XPU) && !defined(PADDLE_WITH_XPU_KP) if (paddle::platform::is_xpu_place(expected_kernel_key.place_) && (kernel_iter == kernels.end() || is_xpu_unsupport)) { VLOG(3) << "fluid missing XPU kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; expected_kernel_key.place_ = platform::CPUPlace(); kernel_iter = kernels.find(expected_kernel_key); } #endif #ifdef PADDLE_WITH_XPU_KP if (paddle::platform::is_xpu_place(expected_kernel_key.place_)) { if (use_xpu_kp_kernel_rt) { VLOG(3) << "fluid xpu_kp using rt mode "; } if (use_xpu_kp_kernel_debug) { VLOG(3) << "fluid xpu_kp using debug mode "; } if (is_xpu_kp_support) { expected_kernel_key.library_type_ = paddle::framework::LibraryType::kKP; kernel_iter = kernels.find(expected_kernel_key); VLOG(3) << "using fluid XPU KP kernel: " << op.Type() << ", using_kernel_key:" << expected_kernel_key; } if (!is_xpu_kp_support && (kernel_iter == kernels.end() || is_xpu_unsupport)) { VLOG(3) << "fluid missing XPU kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; expected_kernel_key.place_ = platform::CPUPlace(); kernel_iter = kernels.find(expected_kernel_key); } } #endif #ifdef PADDLE_WITH_ASCEND_CL if (kernel_iter == kernels.end() && paddle::platform::is_npu_place(expected_kernel_key.place_)) { VLOG(3) << "missing NPU kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; expected_kernel_key.place_ = platform::CPUPlace(); kernel_iter = kernels.find(expected_kernel_key); } #endif #ifdef PADDLE_WITH_IPU if (kernel_iter == kernels.end() && paddle::platform::is_ipu_place(expected_kernel_key.place_)) { VLOG(3) << "missing IPU kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; expected_kernel_key.place_ = platform::CPUPlace(); kernel_iter = kernels.find(expected_kernel_key); } #endif #ifdef PADDLE_WITH_MLU if (kernel_iter == kernels.end() && paddle::platform::is_mlu_place(expected_kernel_key.place_)) { VLOG(3) << "missing MLU kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; expected_kernel_key.place_ = platform::CPUPlace(); kernel_iter = kernels.find(expected_kernel_key); } #endif #ifdef PADDLE_WITH_CUSTOM_DEVICE if (kernel_iter == kernels.end() && paddle::platform::is_custom_place(expected_kernel_key.place_)) { VLOG(3) << "missing " << place.GetDeviceType() << " kernel: " << op.Type() << ", expected_kernel_key:" << expected_kernel_key << ", fallbacking to CPU one!"; expected_kernel_key.place_ = platform::CPUPlace(); kernel_iter = kernels.find(expected_kernel_key); } #endif // TODO(jiabin): Add operator.cc's line 1000 part back when we need that // case PADDLE_ENFORCE_NE( kernel_iter, kernels.end(), platform::errors::NotFound("Operator %s does not have kernel for %s.", op.Type(), KernelTypeToString(expected_kernel_key))); if (!(expected_kernel_key.place_ == place)) { dev_ctx = pool.Get(expected_kernel_key.place_); } return PreparedOp(op, empty_ctx, expected_kernel_key, kernel_iter->second, arg_map_fn, default_kernel_signature, dev_ctx); } PreparedOp PreparedOp::Prepare(const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, const platform::Place& place, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs) { return PrepareImpl(ins, outs, op, place, attrs, default_attrs, phi_kernel_factory, phi_op_utils_map, default_phi_kernel_sig_map); } PreparedOp PreparedOp::Prepare(const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, const platform::Place& place, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs) { return PrepareImpl(ins, outs, op, place, attrs, default_attrs, phi_kernel_factory, phi_op_utils_map, default_phi_kernel_sig_map); } PreparedOp PreparedOp::Prepare(const NameVarMap& ins, const NameVarMap& outs, const framework::OperatorWithKernel& op, const platform::Place& place, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs) { return PrepareImpl(ins, outs, op, place, attrs, default_attrs, phi_kernel_factory, phi_op_utils_map, default_phi_kernel_sig_map); } template static void PreparedOpRunImpl( const framework::OperatorBase& op, const framework::RuntimeContext& ctx, const framework::OpKernelType& kernel_type, const framework::OperatorWithKernel::OpKernelFunc& func, const phi::ArgumentMappingFn* arg_map_fn, const phi::KernelSignature* default_kernel_signature, platform::DeviceContext* dev_ctx, const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs) { // TODO(zjl): remove scope in dygraph { platform::RecordEvent record_event("infer_shape", platform::TracerEventType::OperatorInner, 1, platform::EventRole::kInnerOp); DygraphInferShapeContext infer_shape_ctx(&ins, &outs, &attrs, &default_attrs, op.Type(), &kernel_type, arg_map_fn, default_kernel_signature); op.Info().infer_shape_(&infer_shape_ctx); record_event.End(); platform::RecordOpInfoSupplement( op.Type(), op.Attrs(), infer_shape_ctx, ctx); } { platform::RecordEvent record_event("compute", platform::TracerEventType::OperatorInner, 1, platform::EventRole::kInnerOp); func(DygraphExecutionContext( op, empty_scope, *dev_ctx, ctx, ins, outs, attrs, default_attrs)); } if (FLAGS_check_nan_inf) { framework::details::CheckOpHasNanOrInfInDygraph( op.Type(), outs, dev_ctx->GetPlace()); } if (FLAGS_benchmark) { dev_ctx->Wait(); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError()); VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error"; #endif } /** * [ Why need handle complex gradient to real gradient? ] * * After the introduction of complex number calculations, Ops that support * complex number calculations generally support type promotion, such as * x(float32) + y(complex64) = out(complex64), then the type of the grad * tensor should be dout(complex64), dx(float32), dy (complex64). * * But because the dout is complex64, the dx is also complex64 after * grad op kernel executed, we need to recognize this situation and * convert dx to float32 type. HandleComplexGradToRealGrad does this thing. */ if (framework::IsComplexType(kernel_type.data_type_)) { HandleComplexGradToRealGrad(outs); } } template static void PreparedOpRunPtImpl( const framework::OperatorBase& op, const framework::OpKernelType& kernel_type, const phi::ArgumentMappingFn* arg_map_fn, const phi::KernelSignature* default_kernel_signature, const phi::KernelSignature& kernel_signature, const phi::Kernel& phi_kernel, platform::DeviceContext* dev_ctx, const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs) { { platform::RecordEvent record_event("infer_shape", platform::TracerEventType::OperatorInner, 1, platform::EventRole::kInnerOp); DygraphInferShapeContext infer_shape_ctx(&ins, &outs, &attrs, &default_attrs, op.Type(), &kernel_type, arg_map_fn, default_kernel_signature); op.Info().infer_shape_(&infer_shape_ctx); record_event.End(); platform::RecordOpInfoSupplement( op.Type(), op.Attrs(), infer_shape_ctx, kernel_signature); } { platform::RecordEvent record_event("compute", platform::TracerEventType::OperatorInner, 1, platform::EventRole::kInnerOp); PreparePhiData(phi_kernel, kernel_signature, ins); phi::KernelContext phi_kernel_context; BuildDygraphPhiKernelContext(kernel_signature, phi_kernel, ins, outs, attrs, default_attrs, dev_ctx, &phi_kernel_context); phi_kernel(&phi_kernel_context); } if (FLAGS_check_nan_inf) { framework::details::CheckOpHasNanOrInfInDygraph( op.Type(), outs, dev_ctx->GetPlace()); } if (FLAGS_benchmark) { dev_ctx->Wait(); #if defined(PADDLE_WITH_CUDA) || defined(PADDLE_WITH_HIP) PADDLE_ENFORCE_GPU_SUCCESS(platform::GpuGetLastError()); VLOG(4) << "Operator(" << op.Type() << "): context wait and get last error"; #endif } if (framework::IsComplexType(kernel_type.data_type_)) { HandleComplexGradToRealGrad(outs); } } void PreparedOp::Run(const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs) { if (run_phi_kernel_) { PreparedOpRunPtImpl(op_, kernel_type_, arg_map_fn_, default_kernel_signature_, kernel_signature_, phi_kernel_, dev_ctx_, ins, outs, attrs, default_attrs); } else { PreparedOpRunImpl(op_, ctx_, kernel_type_, func_, arg_map_fn_, default_kernel_signature_, dev_ctx_, ins, outs, attrs, default_attrs); } } void PreparedOp::Run(const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs) { if (run_phi_kernel_) { PreparedOpRunPtImpl(op_, kernel_type_, arg_map_fn_, default_kernel_signature_, kernel_signature_, phi_kernel_, dev_ctx_, ins, outs, attrs, default_attrs); } else { PreparedOpRunImpl(op_, ctx_, kernel_type_, func_, arg_map_fn_, default_kernel_signature_, dev_ctx_, ins, outs, attrs, default_attrs); } } void PreparedOp::Run(const NameVarMap& ins, const NameVarMap& outs, const framework::AttributeMap& attrs, const framework::AttributeMap& default_attrs) { if (run_phi_kernel_) { PreparedOpRunPtImpl(op_, kernel_type_, arg_map_fn_, default_kernel_signature_, kernel_signature_, phi_kernel_, dev_ctx_, ins, outs, attrs, default_attrs); } else { PreparedOpRunImpl(op_, ctx_, kernel_type_, func_, arg_map_fn_, default_kernel_signature_, dev_ctx_, ins, outs, attrs, default_attrs); } } } // namespace imperative } // namespace paddle