# Benchmark Machine: - Server: Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz, 2 Sockets, 20 Cores per socket - Laptop: TBD System: CentOS release 6.3 (Final), Docker 1.12.1. PaddlePaddle: (TODO: will rerun after 0.11.0) - paddlepaddle/paddle:latest (for MKLML and MKL-DNN) - MKL-DNN tag v0.11 - MKLML 2018.0.1.20171007 - paddlepaddle/paddle:latest-openblas (for OpenBLAS) - OpenBLAS v0.2.20 On each machine, we will test and compare the performance of training on single node using MKL-DNN / MKLML / OpenBLAS respectively. ## Benchmark Model ### Server Test on batch size 64, 128, 256 on Intel(R) Xeon(R) Gold 6148 CPU @ 2.40GHz Input image size - 3 * 224 * 224, Time: images/second - VGG-19 | BatchSize | 64 | 128 | 256 | |--------------|-------| -----| --------| | OpenBLAS | 7.80 | 9.00 | 10.80 | | MKLML | 12.12 | 13.70 | 16.18 | | MKL-DNN | 28.46 | 29.83 | 30.44 | - ResNet-50 | BatchSize | 64 | 128 | 256 | |--------------|-------| ------| -------| | OpenBLAS | 25.22 | 25.68 | 27.12 | | MKLML | 32.52 | 31.89 | 33.12 | | MKL-DNN | 81.69 | 82.35 | 84.08 | - GoogLeNet | BatchSize | 64 | 128 | 256 | |--------------|-------| ------| -------| | OpenBLAS | 89.52 | 96.97 | 108.25 | | MKLML | 128.46| 137.89| 158.63 | | MKL-DNN     | 250.46| 264.83| 269.50 | ### Laptop TBD