// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "paddle/phi/kernels/add_n_kernel.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/core/tensor_utils.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/fluid/operators/math/selected_rows_functor.h" namespace phi { template void AddNArrayKernel(const Context& dev_ctx, const std::vector& x, TensorArray* out) { for (auto& ele : *out) { dev_ctx.template Alloc(&ele); } bool in_place = true; if (x.size() > 0 && x[0]->size() == out->size()) { for (size_t i = 0; i < out->size(); i++) { if (x[0]->at(i).IsInitialized() && out->at(i).data() != x[0]->at(i).data()) { in_place = false; break; } } } else { in_place = false; } for (size_t i = in_place ? 1 : 0; i < x.size(); ++i) { auto* in_array = x.at(i); for (size_t j = 0; j < in_array->size(); ++j) { if (in_array->at(j).IsInitialized() && (in_array->at(j).numel() != 0)) { if (j >= out->size()) { out->resize(j + 1); } if (!out->at(j).IsInitialized() || (out->at(j).numel() == 0)) { Copy(dev_ctx, in_array->at(j), in_array->at(j).place(), false, &out->at(j)); out->at(j).set_lod(in_array->at(j).lod()); } else { PADDLE_ENFORCE_EQ( out->at(j).lod(), in_array->at(j).lod(), phi::errors::InvalidArgument( "The lod message between inputs[%d] and" " outputs[%d] must be same, but now is not same.", j, j)); auto in = EigenVector::Flatten(in_array->at(j)); auto result = EigenVector::Flatten(out->at(j)); result.device(*dev_ctx.eigen_device()) = result + in; } } } } } } // namespace phi