/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/operators/fc_op.h" #include "paddle/fluid/platform/mkldnn_helper.h" #include "paddle/phi/backends/onednn/onednn_reuse.h" namespace paddle { namespace operators { using dnnl::inner_product_forward; using dnnl::memory; using dnnl::primitive; using dnnl::prop_kind; using dnnl::stream; using framework::DDim; using framework::ExecutionContext; using phi::OneDNNContext; using phi::funcs::OneDNNGetDataType; using phi::funcs::to_void_cast; struct InnerProductCache { dnnl::inner_product_forward inner_product_p; dnnl::memory src_mem; dnnl::memory weights_mem; dnnl::memory bias_mem; dnnl::memory dst_mem; }; template class FCMKLDNNHandler : public phi::funcs::OneDNNHandlerNoCachingT { public: FCMKLDNNHandler(const paddle::framework::ExecutionContext& ctx, const OneDNNContext& dev_ctx, const phi::DenseTensor* x, const phi::DenseTensor* weights, const phi::DenseTensor* bias, phi::DenseTensor* out, const int in_num_col_dims, dnnl::engine onednn_engine, platform::Place cpu_place) : phi::funcs::OneDNNHandlerNoCachingT( onednn_engine, cpu_place), dev_ctx_(dev_ctx) { this->memory_key_ = ctx.InputName("W"); auto x_vec_dims = phi::vectorize(x->dims()); auto weights_vec_dims = phi::vectorize(weights->dims()); int MB = 1; for (int i = 0; i < in_num_col_dims; ++i) { MB *= x_vec_dims[i]; } int IC = 1; for (size_t i = in_num_col_dims; i < x_vec_dims.size(); ++i) { IC *= x_vec_dims[i]; } int OC = weights_vec_dims[1]; dnnl::memory::desc bias_md; auto src_md = dnnl::memory::desc( {MB, IC}, OneDNNGetDataType(), dnnl::memory::format_tag::any); auto weights_md = dnnl::memory::desc( {OC, IC}, OneDNNGetDataType(), dnnl::memory::format_tag::any); auto dst_md = dnnl::memory::desc( {MB, OC}, OneDNNGetDataType(), dnnl::memory::format_tag::any); if (bias) { bias_md = dnnl::memory::desc({bias->numel()}, OneDNNGetDataType(), dnnl::memory::format_tag::a); } const auto attrs = CreateFCAttrs(ctx); this->AcquireForwardPrimitiveDescriptor(attrs, prop_kind::forward_inference, src_md, weights_md, bias_md, dst_md); } private: dnnl::primitive_attr CreateFCAttrs(const ExecutionContext& ctx) { dnnl::primitive_attr attributes; dnnl::post_ops post_operations; float sum_scale = 1.0f; float activation_scale = 1.0f; if (phi::funcs::is_int8()) { std::vector output_shift_scale; std::tie(output_shift_scale, sum_scale, activation_scale) = GetOutputScales(ctx); int mask = CreateMask(1, output_shift_scale.size() > 1); attributes.set_output_scales(mask, output_shift_scale); } if (ctx.HasAttr("fuse_residual_connection") && ctx.Attr("fuse_residual_connection")) { post_operations.append_sum(sum_scale); } // ReLU from "fc_fuse_pass" if (ctx.Attr("activation_type") == "relu") { post_operations.append_eltwise( activation_scale, dnnl::algorithm::eltwise_relu, 0.0f, 0.0f); } AppendActivation(ctx, post_operations, activation_scale); if (ctx.HasAttr("fused_output_scale")) { float scale_alpha = ctx.Attr("fused_output_scale"); post_operations.append_eltwise( 1.0, dnnl::algorithm::eltwise_linear, scale_alpha, 0.0f); } attributes.set_post_ops(post_operations); return attributes; } // Compute the bias scales so that its values correspond to the // scale of data being an output of weights and input multiplication std::vector GetBiasScales(const framework::ExecutionContext& ctx) { if (ctx.HasAttr("Bias_scales")) { return ctx.Attr>("Bias_scales"); } else { const float scale_in = ctx.Attr("Scale_in"); const auto& scale_weights = ctx.Attr>("Scale_weights"); std::vector bias_scales(scale_weights.size()); for (size_t i = 0; i < bias_scales.size(); ++i) { if (scale_weights[i] == 0.0) bias_scales[i] = 1.0f; else bias_scales[i] = scale_in * scale_weights[i]; } return bias_scales; } } void AppendActivation(const ExecutionContext& ctx, dnnl::post_ops& post_ops, // NOLINT float activation_scale = 1.0f) { const auto invalid_attribute = ctx.HasAttr("fuse_activation") ? ctx.Attr("fuse_activation").empty() : true; if (invalid_attribute) return; const auto fuse_activation = ctx.Attr("fuse_activation"); const auto fuse_alpha = ctx.HasAttr("fuse_alpha") ? ctx.Attr("fuse_alpha") : 0.0f; const auto fuse_beta = ctx.HasAttr("fuse_beta") ? ctx.Attr("fuse_beta") : 0.0f; if (fuse_activation == "hard_sigmoid") { post_ops.append_eltwise(activation_scale, dnnl::algorithm::eltwise_linear, fuse_alpha, fuse_beta); post_ops.append_eltwise( activation_scale, dnnl::algorithm::eltwise_clip, 0.0f, 1.0f); } else { const std::unordered_map activation_map = { {"abs", dnnl::algorithm::eltwise_abs}, {"clip", dnnl::algorithm::eltwise_clip}, {"gelu", dnnl::algorithm::eltwise_gelu_erf}, {"gelu_erf", dnnl::algorithm::eltwise_gelu_erf}, {"gelu_tanh", dnnl::algorithm::eltwise_gelu_tanh}, {"hard_swish", dnnl::algorithm::eltwise_hardswish}, {"leaky_relu", dnnl::algorithm::eltwise_relu}, {"mish", dnnl::algorithm::eltwise_mish}, {"relu", dnnl::algorithm::eltwise_relu}, {"relu6", dnnl::algorithm::eltwise_bounded_relu}, {"sigmoid", dnnl::algorithm::eltwise_logistic}, {"sqrt", dnnl::algorithm::eltwise_sqrt}, {"swish", dnnl::algorithm::eltwise_swish}, {"tanh", dnnl::algorithm::eltwise_tanh}}; const auto& activation_type = activation_map.find(fuse_activation); PADDLE_ENFORCE_NE( activation_type, activation_map.end(), platform::errors::InvalidArgument( "Activation '%s' not found in oneDNN algorithms mapper", fuse_activation)); post_ops.append_eltwise( activation_scale, activation_type->second, fuse_alpha, fuse_beta); } } // Correct output scale, to take into account scaling of input and weights // Since the data that comes out of input and weight multiplication is // scaled with its own scales, this data needs to be divided by // those scales to normalise them back to what their floating-point range // was. Then we multiply them by desired output scale we want on the output. std::tuple, float, float> GetOutputScales( const ExecutionContext& ctx) { if (ctx.HasAttr("Sum_scale")) { return std::make_tuple(ctx.Attr>("Output_shift_scale"), ctx.Attr("Sum_scale"), ctx.Attr("Activation_scale")); } else { auto scale_in_data = ctx.Attr("Scale_in"); auto scale_weights_data = ctx.Attr>("Scale_weights"); bool has_activation = !ctx.Attr("activation_type").empty(); bool force_fp32_output = ctx.Attr("force_fp32_output"); bool fuse_residual_conn = ctx.HasAttr("fuse_residual_connection") && ctx.Attr("fuse_residual_connection"); auto scale_in_eltwise_data = ctx.HasAttr("Scale_in_eltwise") ? ctx.Attr("Scale_in_eltwise") : 1.0f; // If the output will be in floats, we don't multiply by scale_out. float activation_scale = (!force_fp32_output && has_activation) ? ctx.Attr("Scale_out") : 1.0f; float scale_out_data = (force_fp32_output || has_activation) ? 1.0f : ctx.Attr("Scale_out"); float sum_scale = fuse_residual_conn ? scale_out_data / scale_in_eltwise_data : 1.0f; const size_t weight_scales_num = scale_weights_data.size(); for (size_t i = 0; i < weight_scales_num; ++i) { if (scale_weights_data[i] == 0.0) scale_weights_data[i] = scale_out_data; else scale_weights_data[i] = scale_out_data / (scale_in_data * scale_weights_data[i]); } return std::make_tuple(scale_weights_data, sum_scale, activation_scale); } } // Computing MKL-DNN's scaling mask which determines along which dimension // slice should the scaling be applied. For more data plase refer to: // https://intel.github.io/mkl-dnn/group__c__api__attributes.html // Section dnnl_status_t DNNL_API dnnl_primitive_attr_set_output_scales int CreateMask(int slice_dimension, bool is_multi_channel_quantizied) { return is_multi_channel_quantizied ? 1 << slice_dimension : 0; } std::shared_ptr AcquireMemoryWithReorderAndAttrs( const dnnl::memory::desc& user_md, const dnnl::memory::desc& target_md, void* ptr, const dnnl::primitive_attr& attrs) { std::shared_ptr target_memory_p; auto user_memory_p = std::make_shared(user_md, this->engine_, ptr); target_memory_p = std::make_shared(target_md, this->engine_); auto reorder_p = std::make_shared( *user_memory_p, *target_memory_p, attrs); auto& astream = OneDNNContext::tls().get_stream(); { platform::RecordEvent record_reorder( "int_reorder", platform::TracerEventType::UserDefined, 1, platform::EventRole::kUniqueOp); reorder_p->execute( astream, {{DNNL_ARG_FROM, *user_memory_p}, {DNNL_ARG_TO, *target_memory_p}}); astream.wait(); } return target_memory_p; } std::string memory_key_; const OneDNNContext& dev_ctx_; public: std::shared_ptr AcquireSrcMemoryWithReorder( const phi::DenseTensor* x) { const T_in* x_data = x->data(); auto user_md = x->mem_desc(); if (x->dims().size() != 2) { // reshape restrictions are always satisfied because in case of 3 or 4 dim // input, plain layout is enforced user_md = user_md.reshape(this->fwd_pd_->src_desc().dims()); } return this->AcquireMemoryWithReorder( user_md, this->fwd_pd_->src_desc(), to_void_cast(x_data)); } std::shared_ptr AcquireBiasMemoryWithReorder( const framework::ExecutionContext& ctx, const phi::DenseTensor* bias) { const float* bias_data = bias->data(); if (phi::funcs::is_int8() == false) { // for BF16/FP32 bias is 1D and has no scales, so reorder is not needed return this->AcquireMemoryFromPrimitive(this->fwd_pd_->bias_desc(), to_void_cast(bias_data)); } else { const std::string bias_key = this->memory_key_ + "@bias"; auto memory_p = std::static_pointer_cast( this->dev_ctx_.GetBlob(bias_key)); if (!memory_p) { const auto& scale_data = GetBiasScales(ctx); dnnl::primitive_attr attrs; int mask = CreateMask(0, scale_data.size() > 1); attrs.set_output_scales(mask, scale_data); auto user_md = dnnl::memory::desc({bias->dims()[0]}, OneDNNGetDataType(), dnnl::memory::format_tag::a); memory_p = this->AcquireMemoryWithReorderAndAttrs( user_md, this->fwd_pd_->bias_desc(), to_void_cast(bias_data), attrs); this->dev_ctx_.SetBlob(bias_key, memory_p); } return memory_p; } } std::shared_ptr AcquireWeightsMemoryWithReorder( const phi::DenseTensor* weights, const std::vector& scale_data) { const std::string weights_key = this->memory_key_ + "@weights"; auto memory_p = std::static_pointer_cast( this->dev_ctx_.GetBlob(weights_key)); if (!memory_p) { const float* weights_data = weights->data(); auto weights_dims = this->fwd_pd_->weights_desc().dims(); auto user_md = dnnl::memory::desc(weights_dims, OneDNNGetDataType(), dnnl::memory::format_tag::io); if (phi::funcs::is_int8()) { dnnl::primitive_attr attrs; int mask = CreateMask(0, scale_data.size() > 1); attrs.set_output_scales(mask, scale_data); memory_p = this->AcquireMemoryWithReorderAndAttrs( user_md, this->fwd_pd_->weights_desc(), to_void_cast(weights_data), attrs); } else { memory_p = this->AcquireMemoryWithReorder(user_md, this->fwd_pd_->weights_desc(), to_void_cast(weights_data)); } this->dev_ctx_.SetBlob(weights_key, memory_p); } return memory_p; } std::shared_ptr AcquireCustomDstMemory( const ExecutionContext& ctx, phi::DenseTensor* out) { if (ctx.HasAttr("fuse_residual_connection") && ctx.Attr("fuse_residual_connection")) { auto* residual_param = ctx.Input("ResidualData"); PADDLE_ENFORCE_EQ( out->dims(), residual_param->dims(), platform::errors::InvalidArgument( "Output and elementwise parameter need to have the " "same dimension sizes, but got output's dimension = %d" " and residual param's dimension =%d .", out->dims().size(), residual_param->dims().size())); out->ShareDataWith(*residual_param); } return this->template AcquireDstMemory(out); } // namespace operators }; // namespace paddle #define IF_CHANGE_FC_TW_TYPENAME(condition, ...) \ if (condition) { \ using T_w = int8_t; \ __VA_ARGS__(); \ } else { \ using T_w = T_in; \ __VA_ARGS__(); \ } template class FCMKLDNNKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { bool force_fp32_output = ctx.Attr("force_fp32_output"); bool fuse_relu = ctx.Attr("activation_type") == "relu"; IF_CHANGE_FC_TW_TYPENAME((std::is_same::value), ([&] { if (force_fp32_output) { this->RunKernel(ctx); } else if (phi::funcs::is_int8()) { if (fuse_relu) { this->RunKernel(ctx); } else { this->RunKernel(ctx); } } else { this->RunKernel(ctx); } })); } void PrepareSrcMem(const std::shared_ptr& fc_p, const std::shared_ptr& src_mem, const phi::DenseTensor* x, const dnnl::engine& engine) const { auto x_md = x->mem_desc().reshape(src_mem->get_desc().dims()); if (x_md != src_mem->get_desc()) { dnnl::memory x_mem(x_md, engine, to_void_cast(x->data())); auto reorder_p = dnnl::reorder(x_mem, *src_mem); auto& astream = OneDNNContext::tls().get_stream(); reorder_p.execute(astream, x_mem, *src_mem); astream.wait(); } else { src_mem->set_data_handle(to_void_cast(x->data())); } } void SetOutMemDescWithUnsqueeze2FuseSupport( const framework::ExecutionContext& ctx, phi::DenseTensor* out, const dnnl::memory::desc& out_md) const { const std::vector& fused_unsqueeze2_axes = ctx.Attr>("fused_unsqueeze2_axes"); const std::vector& op_tz = out_md.dims(); std::vector unsqueezed_op_tz( op_tz.size() + fused_unsqueeze2_axes.size(), 0); for (const auto& axis : fused_unsqueeze2_axes) { int positive_axis = axis < 0 ? unsqueezed_op_tz.size() + axis : axis; unsqueezed_op_tz[positive_axis] = 1; } int j = 0; for (size_t i = 0; i < unsqueezed_op_tz.size(); ++i) { if (unsqueezed_op_tz[i] == 0) { unsqueezed_op_tz[i] = op_tz[j++]; } } out->set_mem_desc(out_md.reshape(unsqueezed_op_tz)); out->Resize(phi::make_ddim(unsqueezed_op_tz)); } void SetOutMemDescWithReshape2FuseSupport( const framework::ExecutionContext& ctx, phi::DenseTensor* out, const dnnl::memory::desc& out_md) const { std::vector fused_reshape2_shape( ctx.Attr>("fused_reshape2_shape").begin(), ctx.Attr>("fused_reshape2_shape").end()); const int out_shape_numel = out->numel(); const int new_shape_numel = std::accumulate(fused_reshape2_shape.begin(), fused_reshape2_shape.end(), 1, std::multiplies()); for (size_t i = 0; i < fused_reshape2_shape.size(); ++i) { if (fused_reshape2_shape[i] == -1) { fused_reshape2_shape[i] = -out_shape_numel / new_shape_numel; break; } } out->set_mem_desc(out_md.reshape(fused_reshape2_shape)); out->Resize(phi::make_ddim(fused_reshape2_shape)); } void SetOutMemDescWithLogicalLayoutFusesSupport( const framework::ExecutionContext& ctx, phi::DenseTensor* out, const dnnl::memory::desc& out_md) const { if (ctx.HasAttr("fused_unsqueeze2_axes")) { SetOutMemDescWithUnsqueeze2FuseSupport(ctx, out, out_md); } else if (ctx.HasAttr("fused_reshape2_shape")) { SetOutMemDescWithReshape2FuseSupport(ctx, out, out_md); } else if (ctx.HasAttr("fused_squeeze2_axes")) { out->set_mem_desc(out_md); out->Resize(phi::make_ddim(out_md.dims())); } else { out->set_mem_desc(out_md); } } template void RunKernel(const framework::ExecutionContext& ctx) const { const auto& dev_ctx = ctx.template device_context(); const auto& onednn_engine = dev_ctx.GetEngine(); const auto* x = ctx.Input("Input"); const auto* weights = ctx.Input("W"); const auto* bias = ctx.Input("Bias"); auto out = ctx.Output("Out"); const auto& scale_weights = ctx.Attr>("Scale_weights"); std::shared_ptr fc_p; std::shared_ptr src_memory_p; std::shared_ptr weights_memory_p; std::shared_ptr bias_memory_p; std::shared_ptr dst_memory_p; std::string cache_key; cache_key.reserve(64); cache_key = phi::funcs::ExtendKeyWithThreadInfoIfNeeded( dev_ctx, phi::funcs::CreateKey(dev_ctx, ctx.InputName("Input"), ctx.InputName("W"), phi::vectorize(x->dims()))); auto inner_product_cache = std::static_pointer_cast(dev_ctx.GetBlob(cache_key)); RecomputeOutputDims(ctx, x, weights, out); if (inner_product_cache) { fc_p = std::make_shared( inner_product_cache->inner_product_p); src_memory_p = std::make_shared(inner_product_cache->src_mem); PrepareSrcMem(fc_p, src_memory_p, x, onednn_engine); weights_memory_p = std::make_shared(inner_product_cache->weights_mem); dst_memory_p = std::make_shared(inner_product_cache->dst_mem); if (ctx.HasAttr("fuse_residual_connection") && ctx.Attr("fuse_residual_connection")) { auto* residual_param = ctx.Input("ResidualData"); out->ShareDataWith(*residual_param); } auto out_ptr = out->mutable_data( ctx.GetPlace(), dst_memory_p->get_desc().get_size()); dst_memory_p->set_data_handle(out_ptr); if (bias) { bias_memory_p = std::make_shared(inner_product_cache->bias_mem); } } else { auto in_col_dims = ctx.Attr("in_num_col_dims"); FCMKLDNNHandler handler(ctx, dev_ctx, x, weights, bias, out, in_col_dims, onednn_engine, ctx.GetPlace()); src_memory_p = handler.AcquireSrcMemoryWithReorder(x); weights_memory_p = handler.AcquireWeightsMemoryWithReorder(weights, scale_weights); dst_memory_p = handler.AcquireCustomDstMemory(ctx, out); if (bias) { bias_memory_p = handler.AcquireBiasMemoryWithReorder(ctx, bias); } fc_p = handler.AcquireForwardPrimitive(); } auto& astream = OneDNNContext::tls().get_stream(); std::unordered_map fc_args = { {DNNL_ARG_SRC, *src_memory_p}, {DNNL_ARG_WEIGHTS, *weights_memory_p}, {DNNL_ARG_DST, *dst_memory_p}}; if (bias) { fc_args.insert({DNNL_ARG_BIAS, *bias_memory_p}); } fc_p->execute(astream, fc_args); astream.wait(); if (!inner_product_cache) { auto ip_cache = std::make_shared(); ip_cache->inner_product_p = *fc_p; ip_cache->src_mem = *src_memory_p; ip_cache->weights_mem = *weights_memory_p; ip_cache->dst_mem = *dst_memory_p; if (bias) { ip_cache->bias_mem = *bias_memory_p; } dev_ctx.SetBlob(cache_key, ip_cache); } SetOutMemDescWithLogicalLayoutFusesSupport( ctx, out, dst_memory_p->get_desc().reshape(phi::vectorize(out->dims()))); } void RecomputeOutputDims(const ExecutionContext& ctx, const phi::DenseTensor* x, const phi::DenseTensor* weights, phi::DenseTensor* out) const { int in_num_col_dims = ctx.Attr("in_num_col_dims"); bool padding_weights = ctx.Attr("padding_weights"); PADDLE_ENFORCE_EQ(padding_weights, false, platform::errors::PermissionDenied( "Weight padding in fc can not be used in MKLDNN.")); std::vector output_dims; FCOutputSize(x->dims(), weights->dims(), output_dims, in_num_col_dims, padding_weights); out->Resize(phi::make_ddim(output_dims)); out->set_lod(x->lod()); } }; } // namespace operators } // namespace paddle // Weights of FC are by default stored using fp32, template argument of weight // data type implies their destination data type. (What's eventually going to // be used during computations of kernel). namespace ops = paddle::operators; REGISTER_OP_KERNEL(fc, MKLDNN, ::phi::CPUPlace, ops::FCMKLDNNKernel, ops::FCMKLDNNKernel, ops::FCMKLDNNKernel, ops::FCMKLDNNKernel);