# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. from __future__ import print_function import unittest from typing import Union, Callable import numpy as np import paddle import paddle.fluid as fluid from paddle.fluid.framework import _test_eager_guard from paddle import _C_ops class TestSparseUnary(unittest.TestCase): def assert_raises_on_dense_tensor(self, sparse_func): with _test_eager_guard(): dense_x = paddle.ones((2, 3)) with self.assertRaises(ValueError): sparse_func(dense_x) def compare_with_dense( self, x, to_sparse: Callable[[paddle.Tensor], paddle.Tensor], dense_func: Callable[[paddle.Tensor], paddle.Tensor], sparse_func: Callable[[paddle.Tensor], paddle.Tensor], test_gradient: bool, ): def tensor_allclose(dense_tensor: paddle.Tensor, sparse_tensor: paddle.Tensor): dense_numpy = dense_tensor.numpy() mask = ~np.isnan(dense_numpy) return np.allclose(dense_numpy[mask], sparse_tensor.to_dense().numpy()[mask]) fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": True}) with _test_eager_guard(): dense_x = paddle.to_tensor( x, dtype="float32", stop_gradient=not test_gradient) sparse_x = to_sparse(dense_x) sparse_out = sparse_func(sparse_x) dense_x = paddle.to_tensor( x, dtype="float32", stop_gradient=not test_gradient) dense_out = dense_func(dense_x) assert tensor_allclose(dense_out, sparse_out) if test_gradient: dense_out.backward(dense_out) sparse_out.backward(sparse_out) assert tensor_allclose(dense_x.grad, sparse_x.grad) fluid.set_flags({"FLAGS_retain_grad_for_all_tensor": False}) def test_sparse_relu(self): x = [[0, -1, 0, 2], [0, 0, -3, 0], [4, 5, 0, 0]] sparse_dim = 2 self.compare_with_dense( x, lambda x: x.to_sparse_coo(sparse_dim), paddle.nn.ReLU(), paddle.incubate.sparse.nn.ReLU(), True, ) self.compare_with_dense( x, lambda x: x.to_sparse_csr(), paddle.nn.ReLU(), paddle.incubate.sparse.nn.ReLU(), False, ) self.assert_raises_on_dense_tensor(paddle.incubate.sparse.nn.ReLU()) def test_sparse_sqrt(self): x = [[0, 16, 0, 0], [0, 0, 0, 0], [0, 4, 2, 0]] sparse_dim = 2 self.compare_with_dense( x, lambda x: x.to_sparse_coo(sparse_dim), paddle.sqrt, paddle.incubate.sparse.sqrt, True, ) self.compare_with_dense( x, lambda x: x.to_sparse_csr(), paddle.sqrt, paddle.incubate.sparse.sqrt, False, ) self.assert_raises_on_dense_tensor(paddle.incubate.sparse.sqrt) def test_sparse_sin(self): x = [[0, 16, 0, 0], [0, 0, 0, 0], [0, 4, 2, 0]] sparse_dim = 2 self.compare_with_dense( x, lambda x: x.to_sparse_coo(sparse_dim), paddle.sin, paddle.incubate.sparse.sin, True, ) self.compare_with_dense( x, lambda x: x.to_sparse_csr(), paddle.sin, paddle.incubate.sparse.sin, False, ) self.assert_raises_on_dense_tensor(paddle.incubate.sparse.sin) def test_sparse_tanh(self): x = [[0, 16, 0, 0], [0, 0, 0, 0], [0, -4, 2, 0]] sparse_dim = 2 self.compare_with_dense( x, lambda x: x.to_sparse_coo(sparse_dim), paddle.tanh, paddle.incubate.sparse.tanh, True, ) self.compare_with_dense( x, lambda x: x.to_sparse_csr(), paddle.tanh, paddle.incubate.sparse.tanh, False, ) self.assert_raises_on_dense_tensor(paddle.incubate.sparse.tanh) if __name__ == "__main__": unittest.main()