# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import unittest import numpy as np import paddle.fluid as fluid import paddle.v2 as paddle import paddle.v2.dataset.mnist as mnist class TestPreprocessor(unittest.TestCase): def setUp(self): with fluid.program_guard(fluid.Program(), fluid.Program()): reader = paddle.batch(mnist.train(), batch_size=32) feeder = fluid.DataFeeder( feed_list=[ # order is image and label fluid.layers.data( name='image', shape=[784]), fluid.layers.data( name='label', shape=[1], dtype='int64'), ], place=fluid.CPUPlace()) self.num_batches = fluid.recordio_writer.convert_reader_to_recordio_file( './mnist_for_preprocessor_test.recordio', reader, feeder) def test_main(self): N = 10 img_expected_res = [] lbl_expected_res = [] with fluid.program_guard(fluid.Program(), fluid.Program()): data_file = fluid.layers.io.open_recordio_file( './mnist_for_preprocessor_test.recordio', shapes=[[-1, 784], [-1, 1]], lod_levels=[0, 0], dtypes=['float32', 'int64']) img, lbl = fluid.layers.io.read_file(data_file) if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) else: place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for _ in range(N): img_v, lbl_v = exe.run(fetch_list=[img, lbl]) img_expected_res.append(img_v / 2) lbl_expected_res.append(lbl_v + 1) img_actual_res = [] lbl_actual_res = [] with fluid.program_guard(fluid.Program(), fluid.Program()): data_file = fluid.layers.io.open_recordio_file( './mnist_for_preprocessor_test.recordio', shapes=[[-1, 784], [-1, 1]], lod_levels=[0, 0], dtypes=['float32', 'int64']) preprocessor = fluid.layers.io.Preprocessor(reader=data_file) with preprocessor.block(): img, lbl = preprocessor.inputs() img_out = img / 2 lbl_out = lbl + 1 preprocessor.outputs(img_out, lbl_out) img, lbl = fluid.layers.io.read_file(preprocessor()) if fluid.core.is_compiled_with_cuda(): place = fluid.CUDAPlace(0) else: place = fluid.CPUPlace() exe = fluid.Executor(place) exe.run(fluid.default_startup_program()) for _ in range(N): img_v, lbl_v = exe.run(fetch_list=[img, lbl]) img_actual_res.append(img_v) lbl_actual_res.append(lbl_v) for idx in range(N): np.allclose(img_expected_res[idx], img_actual_res[idx]) np.allclose(lbl_expected_res[idx], lbl_actual_res[idx])