// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/add_n_kernel.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/funcs/eigen/common.h" #include "paddle/phi/kernels/funcs/math_function.h" #include "paddle/fluid/memory/malloc.h" #include "paddle/fluid/memory/memcpy.h" namespace phi { #define CEIL_DIV(x, y) (((x) + (y)-1) / (y)) template __global__ void SumArrayCUDAKernel( T **in, T *out, int64_t N, size_t in_size, bool read_dst) { int id = blockIdx.x * blockDim.x + threadIdx.x; while (id < N) { T total(read_dst ? out[id] : static_cast(0)); for (int i = 0; i < in_size; ++i) { const T *tmp = in[i]; if (tmp) { total += tmp[id]; } } out[id] = total; id += blockDim.x * gridDim.x; } } template void AddNKernel(const Context &dev_ctx, const std::vector &x, DenseTensor *out) { const size_t in_num = x.size(); constexpr size_t theory_sm_threads = 1024; auto stream = dev_ctx.stream(); auto max_threads = dev_ctx.GetMaxPhysicalThreadCount(); auto sm_count = max_threads / theory_sm_threads; size_t tile_size = 0; dim3 grids; dim3 blocks; auto ComputeKernelParameter = [&](size_t length) { if (length >= max_threads) tile_size = 1024; else if (length < max_threads && length > sm_count * 128) tile_size = 512; else if (length <= sm_count * 128) tile_size = 256; grids = dim3(CEIL_DIV(length, tile_size), 1, 1); blocks = dim3(tile_size, 1, 1); }; bool in_place = x[0] == out; if (!in_place) { auto *out_ptr = dev_ctx.template Alloc(out); if (in_num >= 1) { auto &in_0_tensor = *x[0]; if (in_0_tensor.numel() > 0) { in_place = (in_0_tensor.data() == out_ptr); } } } // Sum of two tensors if (in_num == 2) { auto &in_0 = *x[0]; auto &in_1 = *x[1]; int64_t length_0 = in_0.numel(); int64_t length_1 = in_1.numel(); if (length_0 && length_1 && in_0.initialized() && in_1.initialized()) { auto result = EigenVector::Flatten(*out); auto &place = *dev_ctx.eigen_device(); auto in_0_e = EigenVector::Flatten(in_0); auto in_1_e = EigenVector::Flatten(in_1); result.device(place) = in_0_e + in_1_e; } else if (length_0 && in_0.initialized()) { auto result = EigenVector::Flatten(*out); auto &place = *dev_ctx.eigen_device(); result.device(place) = EigenVector::Flatten(in_0); } else if (length_1 && in_1.initialized()) { auto result = EigenVector::Flatten(*out); auto &place = *dev_ctx.eigen_device(); result.device(place) = EigenVector::Flatten(in_1); } return; } int start = in_place ? 1 : 0; if (!in_place) { funcs::SetConstant constant_functor; constant_functor(dev_ctx, out, static_cast(0)); } std::vector in_data; int64_t lod_length = 0; bool dst_write = false; for (int i = start; i < in_num; ++i) { auto &in_i = *x[i]; lod_length = in_i.numel(); if (lod_length && in_i.initialized()) { in_data.emplace_back(in_i.data()); } } // if indata not null, merge into one kernel call. if (!in_data.empty()) { auto tmp_in_array = paddle::memory::Alloc(dev_ctx, in_data.size() * sizeof(T *)); paddle::memory::Copy(dev_ctx.GetPlace(), tmp_in_array->ptr(), phi::CPUPlace(), reinterpret_cast(in_data.data()), in_data.size() * sizeof(T *), dev_ctx.stream()); T **in_array_data = reinterpret_cast(tmp_in_array->ptr()); ComputeKernelParameter(lod_length); SumArrayCUDAKernel<<>>(in_array_data, out->data(), lod_length, in_data.size(), dst_write | in_place); } } } // namespace phi PD_REGISTER_KERNEL(add_n, GPU, ALL_LAYOUT, phi::AddNKernel, float, double, int, int64_t, phi::dtype::bfloat16, phi::dtype::float16) {}