/* Copyright (c) 2017 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "MKLDNNFcLayer.h" #include "paddle/utils/Logging.h" #include "paddle/utils/Stat.h" using namespace mkldnn; // NOLINT typedef memory::format format; typedef inner_product_forward fc_fwd; typedef inner_product_backward_weights fc_bwdWgt; typedef inner_product_backward_data fc_bwdData; namespace paddle { REGISTER_LAYER(mkldnn_fc, MKLDNNFcLayer); bool MKLDNNFcLayer::init(const LayerMap& layerMap, const ParameterMap& parameterMap) { if (!MKLDNNLayer::init(layerMap, parameterMap)) { return false; } CHECK_EQ(inputLayers_.size(), 1) << "Only support one input layer yet"; CHECK_EQ(inputLayers_.size(), parameters_.size()); CHECK(!parameters_[0]->isSparse()) << "Do not support sparse yet"; // output size, cat not be changed oc_ = getSize(); oh_ = 1; ow_ = 1; // input size can not change in FC iLayerSize_ = inputLayers_[0]->getSize(); CHECK_EQ(parameters_[0]->getSize(), iLayerSize_ * oc_); // create weight weight_ = std::unique_ptr(new Weight(oc_, iLayerSize_, parameters_[0], 0)); // create biases if (biasParameter_.get() != NULL) { biases_ = std::unique_ptr(new Weight(1, oc_, biasParameter_)); } return true; } void MKLDNNFcLayer::convertWeightsFromPaddle() { if (hasInitedWgt_) { return; } // TODO(TJ): dst format should get from wgtVal_ int dstFmt = PARAM_FORMAT_MKLDNN_OI; int srcFmt = weight_->getParameterPtr()->getHeaderFormat(); if (srcFmt == dstFmt) { return; } // The weight_ is transposed from initial paddle weight MatrixPtr paddleWgt = Matrix::create( weight_->getW()->getData(), iLayerSize_, oc_, false, false); // TODO(TJ): remove this print when do not need differ weights std::ostringstream ostr; paddleWgt->print(ostr); VLOG(MKLDNN_ALL) << "Initial Weight from paddle: " << std::endl << ostr.str(); // The mkldnn weight is transposed from initial paddle matrix MatrixPtr paddleWgtT; paddleWgt->transpose(paddleWgtT, true); weight_->getW()->copyFrom(*paddleWgtT); weight_->getParameterPtr()->setHeaderFormat(dstFmt); hasInitedWgt_ = true; } void MKLDNNFcLayer::convertWeightsToPaddle() { MatrixPtr dnnWgt = weight_->getW(); MatrixPtr paddleWgt; dnnWgt->transpose(paddleWgt, true); // copy paddle weight and override on weight_ MatrixPtr dnnWgtT = Matrix::create( dnnWgt->getData(), dnnWgt->getWidth(), dnnWgt->getHeight(), false, false); dnnWgtT->copyFrom(*paddleWgt); } void MKLDNNFcLayer::reshape() { const Argument& input = getInput(0, getPrev(0)->getDeviceId()); int batchSize = input.getBatchSize(); if (bs_ == batchSize) { return; } bs_ = batchSize; ih_ = input.getFrameHeight(); iw_ = input.getFrameWidth(); if (ih_ == 0) { ih_ = 1; } if (iw_ == 0) { iw_ = 1; } hasSpatial_ = true; if (ih_ == 1 && iw_ == 1) { hasSpatial_ = false; } CHECK_EQ(iLayerSize_, inputLayers_[0]->getSize()); ic_ = iLayerSize_ / (ih_ * iw_); CHECK_EQ(size_t(ic_ * ih_ * iw_), iLayerSize_) << "not divisible"; CHECK_EQ(size_t(oc_), getSize()); printSizeInfo(); // reset output output_.setFrameHeight(oh_); output_.setFrameWidth(ow_); resetOutput(bs_, oc_); // reset mkldnn forward resetFwd(); needResetBwd_ = true; convertWeightsFromPaddle(); } void MKLDNNFcLayer::resetFwd() { bool hasBias = biases_ && biases_->getW(); const MatrixPtr& wgt = weight_->getW(); const MatrixPtr& bias = hasBias ? biases_->getW() : nullptr; const MatrixPtr& out = output_.value; if (prevIsMKLDNN()) { const MatrixPtr& in = getInputValue(0); inVal_ = std::dynamic_pointer_cast(in); CHECK(inVal_) << "Input should be MKLDNNMatrix"; } else { CHECK_EQ(getPrev(0)->getDeviceId(), CPU_DEVICE) << "Only support CPU yet"; const MatrixPtr& in = getInputValue(0, CPU_DEVICE); inVal_ = MKLDNNMatrix::create( in, memory::dims{bs_, ic_, ih_, iw_}, format::nchw, engine_); } inVal_->downSpatial(); wgtVal_ = MKLDNNMatrix::create( wgt, memory::dims{oc_, ic_, ih_, iw_}, format::oihw, engine_); wgtVal_->downSpatial(); biasVal_ = hasBias ? MKLDNNMatrix::create(bias, {oc_}, format::x, engine_) : nullptr; outVal_ = MKLDNNMatrix::create(out, {bs_, oc_}, format::nc, engine_); // change original output value to mkldnn output value output_.value = std::dynamic_pointer_cast(outVal_); if (!nextIsMKLDNN()) { Argument cpuOutput; for (size_t i = 0; i < outputOtherDevice_.size(); i++) { if (outputOtherDevice_[i].deviceId == CPU_DEVICE) { cpuOutput = outputOtherDevice_[i]; } } cpuOutput.setFrameHeight(output_.getFrameHeight()); cpuOutput.setFrameWidth(output_.getFrameWidth()); // fc cpu output value do not need convert cpuOutput.value = output_.value; } // create forward handle prop_kind pk = prop_kind::forward; fc_fwd::desc fwdDesc = hasBias ? fc_fwd::desc(pk, inVal_->getMD(), wgtVal_->getMD(), biasVal_->getMD(), outVal_->getMD()) : fc_fwd::desc( pk, inVal_->getMD(), wgtVal_->getMD(), outVal_->getMD()); fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_); if (hasBias) { fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *biasVal_, *outVal_)); } else { fwd_.reset(new fc_fwd(fwdPD, *inVal_, *wgtVal_, *outVal_)); } printValueFormatFlow(); pipelineFwd_.clear(); pipelineFwd_.push_back(*fwd_); } void MKLDNNFcLayer::resetBwd() { if (!needResetBwd_) { return; } needResetBwd_ = false; bool hasBias = biases_ && biases_->getWGrad(); /// backward weight CHECK(inVal_) << "Should have input value"; const MatrixPtr& wgt = weight_->getWGrad(); const MatrixPtr& bias = hasBias ? biases_->getWGrad() : nullptr; if (nextIsMKLDNN()) { // can not directly cast outputgrad to mkldnnmatrix, // since each layer can not write the inputgrad to mkldnn inputgrad. // So just create from matrix with outputvalue format. const MatrixPtr& out = getOutput(MKLDNN_DEVICE).grad; outGrad_ = MKLDNNMatrix::create(out, outVal_->getPD()); // TODO: maybe need merge topdiffs } else { // TODO: merge topdiffs const MatrixPtr& out = getOutput(CPU_DEVICE).grad; // fc do not need to convert from cpu device since output always nc // only need create from cpu device outGrad_ = MKLDNNMatrix::create(out, outVal_->getPD()); } wgtGrad_ = MKLDNNMatrix::create(wgt, wgtVal_->getPD()); biasGrad_ = hasBias ? MKLDNNMatrix::create(bias, biasVal_->getPD()) : nullptr; // create memory primitive desc fc_fwd::desc fwdDesc = fc_fwd::desc(prop_kind::forward, inVal_->getMD(), wgtGrad_->getMD(), outGrad_->getMD()); fc_fwd::primitive_desc fwdPD = fc_fwd::primitive_desc(fwdDesc, engine_); fc_bwdWgt::desc bwdWgtDesc = hasBias ? fc_bwdWgt::desc(inVal_->getMD(), wgtGrad_->getMD(), biasGrad_->getMD(), outGrad_->getMD()) : fc_bwdWgt::desc( inVal_->getMD(), wgtGrad_->getMD(), outGrad_->getMD()); fc_bwdWgt::primitive_desc bwdWgtPD = fc_bwdWgt::primitive_desc(bwdWgtDesc, engine_, fwdPD); if (hasBias) { bwdWgt_.reset( new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_, *biasGrad_)); } else { bwdWgt_.reset(new fc_bwdWgt(bwdWgtPD, *inVal_, *outGrad_, *wgtGrad_)); } pipelineBwd_.clear(); pipelineBwd_.push_back(*bwdWgt_); /// backward data if (prevIsMKLDNN()) { const MatrixPtr& in = getInputGrad(0, MKLDNN_DEVICE); if (in == nullptr) { return; } if (getInput(0, MKLDNN_DEVICE).getAllCount() > 1) { // TODO: many mkldnn bots // add sum handle } else { inGrad_ = MKLDNNMatrix::create(in, inVal_->getPD()); } } else { const MatrixPtr& in = getInputGrad(0, CPU_DEVICE); if (in == nullptr) { return; } if (getInput(0, CPU_DEVICE).getAllCount() > 1) { // TODO: many bots // add sum handle } else { inGrad_ = MKLDNNMatrix::create(in, inVal_->getPD()); } } fc_bwdData::desc bwdDataDesc = fc_bwdData::desc(inVal_->getMD(), wgtGrad_->getMD(), outGrad_->getMD()); fc_bwdData::primitive_desc bwdDataPD = fc_bwdData::primitive_desc(bwdDataDesc, engine_, fwdPD); CHECK(wgtVal_) << "Should have weight memory"; bwdData_.reset(new fc_bwdData(bwdDataPD, *outGrad_, *wgtVal_, *inGrad_)); printGradFormatFlow(); pipelineBwd_.push_back(*bwdData_); } void MKLDNNFcLayer::forward(PassType passType) { Layer::forward(passType); reshape(); { REGISTER_TIMER_INFO("mkldnn_FwdTimer", getName().c_str()); syncInputValue(); // just submit forward pipeline stream_->submit(pipelineFwd_); } /* activation */ { REGISTER_TIMER_INFO("FwActTimer", getName().c_str()); forwardActivation(); } } void MKLDNNFcLayer::backward(const UpdateCallback& callback) { /* Do derivation */ { REGISTER_TIMER_INFO("BpActTimer", getName().c_str()); backwardActivation(); } { REGISTER_TIMER_INFO("mkldnn_bwdTimer", getName().c_str()); resetBwd(); syncOutputGrad(); // just sumbmit backward pipeline stream_->submit(pipelineBwd_); } { REGISTER_TIMER_INFO("WeightUpdate", getName().c_str()); weight_->getParameterPtr()->incUpdate(callback); if (biases_ && biases_->getWGrad()) { biases_->getParameterPtr()->incUpdate(callback); } } } } // namespace paddle