/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include /// todo(tianbing), delete #include #include "FunctionTest.h" #include "paddle/math/Matrix.h" #include "paddle/math/SparseMatrix.h" #include "paddle/math/tests/test_matrixUtil.h" #include "paddle/testing/TestUtil.h" using namespace paddle; // NOLINT /** * C = alpha * C + beta * (A * B), A, B, C dense matrix * dense = dense * dense */ void testDDDMatrix(bool transa, bool transb, int dimM, int dimN, int dimK) { real alpha = 1.5; real beta = 2.0; const auto cpuFunc = FunctionBase::funcRegistrar_.createByType("MulOp-CPU"); cpuFunc->init(FuncConfig().set("scaleAB", alpha).set("scaleT", beta)); const auto gpuFunc = FunctionBase::funcRegistrar_.createByType("MulOp-GPU"); gpuFunc->init(FuncConfig().set("scaleAB", alpha).set("scaleT", beta)); int heightA = (transa == false) ? dimM : dimK; int widthA = (transa == false) ? dimK : dimM; int heightB = (transb == false) ? dimK : dimN; int widthB = (transb == false) ? dimN : dimK; int heightC = dimM; int widthC = dimN; auto cpuA = std::make_shared(heightA, widthA, transa); auto cpuB = std::make_shared(heightB, widthB, transb); auto cpuC = std::make_shared(heightC, widthC); auto gpuA = std::make_shared(heightA, widthA, transa); auto gpuB = std::make_shared(heightB, widthB, transb); auto gpuC = std::make_shared(heightC, widthC); cpuA->randomizeUniform(); cpuB->randomizeUniform(); cpuC->randomizeUniform(); gpuA->copyFrom(*cpuA); gpuB->copyFrom(*cpuB); gpuC->copyFrom(*cpuC); BufferArgs cpuInputs; BufferArgs cpuOutputs; cpuInputs.addArg(*cpuA); cpuInputs.addArg(*cpuB); cpuOutputs.addArg(*cpuC, ADD_TO); cpuFunc->calc(cpuInputs, cpuOutputs); BufferArgs gpuInputs; BufferArgs gpuOutputs; gpuInputs.addArg(*gpuA); gpuInputs.addArg(*gpuB); gpuOutputs.addArg(*gpuC, ADD_TO); gpuFunc->calc(gpuInputs, gpuOutputs); autotest::TensorCheckErr(*cpuC, *gpuC); } TEST(Matrix, DDDMul) { LOG(INFO) << "test for dense = dense * dense matrix"; for (auto transa : {false, true}) { for (auto transb : {false, true}) { for (auto dimM : {1, 10, 100}) { for (auto dimN : {1, 10}) { for (auto dimK : {8}) { if (true == transa && true == transb) { continue; } VLOG(3) << setiosflags(std::ios::left) << std::setfill(' ') << " transa=" << transa << " transb=" << transb << " dimM=" << std::setw(5) << dimM << " dimN=" << std::setw(5) << dimN << " dimK=" << std::setw(5) << dimK; testDDDMatrix(transa, transb, dimM, dimN, dimK); } } } } } } /** * C += A * B, B, C dense, A sparse * dense = sparse * dense */ void testDSparseDMatrix( size_t dimM, size_t dimN, size_t dimK, size_t nnz, SparseFormat FORMAT) { real alpha = 1.0; real beta = 1.0; const auto cpuFunc = FunctionBase::funcRegistrar_.createByType("MulOp-CPU"); cpuFunc->init(FuncConfig().set("scaleAB", alpha).set("scaleT", beta)); const auto gpuFunc = FunctionBase::funcRegistrar_.createByType("MulOp-GPU"); gpuFunc->init(FuncConfig().set("scaleAB", alpha).set("scaleT", beta)); CpuSparseMatrix cpuMatrixA(dimM, dimK, nnz, FLOAT_VALUE, FORMAT, false); GpuSparseMatrix gpuMatrixA(dimM, dimK, nnz, FLOAT_VALUE, FORMAT, false); CpuMatrix cpuDenseA(dimM, dimK, false); auto cpuMatrixB = Matrix::create(dimK, dimN, false, false); auto gpuMatrixB = Matrix::create(dimK, dimN, false, true); auto cpuDenseB = Matrix::create(dimK, dimN, false, false); auto cpuMatrixC = Matrix::create(dimM, dimN, false, false); auto gpuMatrixC = Matrix::create(dimM, dimN, false, true); auto cpuDenseC = Matrix::create(dimM, dimN, false, false); /*matrix init*/ hl_stream_t stream(HPPL_STREAM_1); cpuMatrixA.randomizeUniform(); cpuMatrixB->randomizeUniform(); cpuMatrixC->randomizeUniform(); gpuMatrixA.copyFrom(cpuMatrixA, stream); gpuMatrixB->copyFrom(*cpuMatrixB, stream); gpuMatrixC->copyFrom(*cpuMatrixC, stream); cpuDenseA.copyFrom(cpuMatrixA); cpuDenseB->copyFrom(*cpuMatrixB); cpuDenseC->copyFrom(*cpuMatrixC); hl_stream_synchronize(stream); /*matrix mul*/ BufferArgs cpuInputs; BufferArgs cpuOutputs; cpuInputs.addArg(cpuMatrixA); cpuInputs.addArg(*cpuMatrixB); cpuOutputs.addArg(*cpuMatrixC, ADD_TO); cpuFunc->calc(cpuInputs, cpuOutputs); BufferArgs gpuInputs; BufferArgs gpuOutputs; gpuInputs.addArg(gpuMatrixA); gpuInputs.addArg(*gpuMatrixB); gpuOutputs.addArg(*gpuMatrixC, ADD_TO); gpuFunc->calc(gpuInputs, gpuOutputs); BufferArgs denseInputs; BufferArgs denseOutputs; denseInputs.addArg(cpuDenseA); denseInputs.addArg(*cpuDenseB); denseOutputs.addArg(*cpuDenseC, ADD_TO); cpuFunc->calc(denseInputs, denseOutputs); /*check result*/ autotest::TensorCheckErr(*cpuMatrixC, *cpuDenseC); autotest::TensorCheckErr(*cpuMatrixC, *gpuMatrixC); } TEST(Matrix, DSparseDMul) { LOG(INFO) << "test for dense = sparse * dense matrix"; for (const auto dimM : {10, 100, 1000}) { for (const auto dimN : {10, 100}) { for (const auto dimK : {3, 10}) { for (const auto nnz : {3, 10}) { for (const auto FORMAT : {SPARSE_CSR}) { VLOG(3) << setiosflags(std::ios::left) << std::setfill(' ') << " dimM=" << std::setw(5) << dimM << " dimN=" << std::setw(5) << dimN << " dimK=" << std::setw(5) << dimK << " nnz=" << std::setw(5) << nnz << " format=" << std::setw(5) << FORMAT; testDSparseDMatrix(dimM, dimN, dimK, nnz, FORMAT); } } } } } } /** * C += A * B, A, C dense, B sparse * dense = dense * sparse */ void testDDSparseMatrix( size_t dimM, size_t dimN, size_t dimK, size_t nnz, SparseFormat FORMAT) { real alpha = 1.0; real beta = 1.0; const auto cpuFunc = FunctionBase::funcRegistrar_.createByType("MulOp-CPU"); cpuFunc->init(FuncConfig().set("scaleAB", alpha).set("scaleT", beta)); const auto gpuFunc = FunctionBase::funcRegistrar_.createByType("MulOp-GPU"); gpuFunc->init(FuncConfig().set("scaleAB", alpha).set("scaleT", beta)); auto cpuMatrixA = Matrix::create(dimM, dimK, false, false); auto gpuMatrixA = Matrix::create(dimM, dimK, false, true); auto cpuDenseA = Matrix::create(dimM, dimK, false, false); CpuSparseMatrix cpuMatrixB(dimK, dimN, nnz, FLOAT_VALUE, FORMAT, false); GpuSparseMatrix gpuMatrixB(dimK, dimN, nnz, FLOAT_VALUE, FORMAT, false); auto cpuDenseB = Matrix::create(dimK, dimN, false, false); auto cpuMatrixC = Matrix::create(dimM, dimN, false, false); auto gpuMatrixC = Matrix::create(dimM, dimN, false, true); auto cpuDenseC = Matrix::create(dimM, dimN, false, false); /*matrix init*/ hl_stream_t stream(HPPL_STREAM_1); cpuMatrixA->randomizeUniform(); cpuMatrixB.randomizeUniform(); cpuMatrixC->randomizeUniform(); gpuMatrixA->copyFrom(*cpuMatrixA, stream); gpuMatrixB.copyFrom(cpuMatrixB, stream); gpuMatrixC->copyFrom(*cpuMatrixC, stream); cpuDenseA->copyFrom(*cpuMatrixA); cpuDenseB->copyFrom(cpuMatrixB); cpuDenseC->copyFrom(*cpuMatrixC); hl_stream_synchronize(stream); /*matrix mul*/ BufferArgs cpuInputs; BufferArgs cpuOutputs; cpuInputs.addArg(*cpuMatrixA); cpuInputs.addArg(cpuMatrixB); cpuOutputs.addArg(*cpuMatrixC, ADD_TO); cpuFunc->calc(cpuInputs, cpuOutputs); BufferArgs gpuInputs; BufferArgs gpuOutputs; gpuInputs.addArg(*gpuMatrixA); gpuInputs.addArg(gpuMatrixB); gpuOutputs.addArg(*gpuMatrixC, ADD_TO); gpuFunc->calc(gpuInputs, gpuOutputs); BufferArgs denseInputs; BufferArgs denseOutputs; denseInputs.addArg(*cpuDenseA); denseInputs.addArg(*cpuDenseB); denseOutputs.addArg(*cpuDenseC, ADD_TO); cpuFunc->calc(denseInputs, denseOutputs); /*check result*/ autotest::TensorCheckErr(*cpuMatrixC, *cpuDenseC); autotest::TensorCheckErr(*cpuMatrixC, *gpuMatrixC); } TEST(Matrix, DDSparseMul) { LOG(INFO) << "test for dense = dense * sparse matrix"; for (const auto dimM : {10, 100, 1000}) { for (const auto dimN : {10, 100}) { for (const auto dimK : {3, 10}) { for (const auto nnz : {3, 10}) { for (const auto FORMAT : {SPARSE_CSR, SPARSE_CSC}) { VLOG(3) << setiosflags(std::ios::left) << std::setfill(' ') << " dimM=" << std::setw(5) << dimM << " dimN=" << std::setw(5) << dimN << " dimK=" << std::setw(5) << dimK << " nnz=" << std::setw(5) << nnz << " format=" << std::setw(5) << FORMAT; testDDSparseMatrix(dimM, dimN, dimK, nnz, FORMAT); } } } } } } /** * C += A * B, A sparse, B, C dense * sparse = dense * dense */ void testSparseDDMatrix( size_t dimM, size_t dimN, size_t dimK, size_t nnz, SparseFormat FORMAT) { real alpha = 1.0; real beta = 1.0; const auto cpuFunc = FunctionBase::funcRegistrar_.createByType("MulOp-CPU"); cpuFunc->init(FuncConfig().set("scaleAB", alpha).set("scaleT", beta)); const auto gpuFunc = FunctionBase::funcRegistrar_.createByType("MulOp-GPU"); gpuFunc->init(FuncConfig().set("scaleAB", alpha).set("scaleT", beta)); auto cpuMatrixA = Matrix::create(dimM, dimK, false, false); auto gpuMatrixA = Matrix::create(dimM, dimK, false, true); auto cpuDenseA = Matrix::create(dimM, dimK, false, false); auto cpuMatrixB = Matrix::create(dimK, dimN, false, false); auto gpuMatrixB = Matrix::create(dimK, dimN, false, true); auto cpuDenseB = Matrix::create(dimK, dimN, false, false); CpuSparseMatrix cpuMatrixC(dimM, dimN, nnz, FLOAT_VALUE, FORMAT, false); CpuSparseMatrix gpuMatrixC_d2h(dimM, dimN, nnz, FLOAT_VALUE, FORMAT, false); GpuSparseMatrix gpuMatrixC(dimM, dimN, nnz, FLOAT_VALUE, FORMAT, false); CpuMatrix cpuDenseC(dimM, dimN, false); /*matrix init*/ hl_stream_t stream(HPPL_STREAM_1); cpuMatrixA->randomizeUniform(); cpuMatrixB->randomizeUniform(); cpuMatrixC.randomizeUniform(); gpuMatrixA->copyFrom(*cpuMatrixA, stream); gpuMatrixB->copyFrom(*cpuMatrixB, stream); gpuMatrixC.copyFrom(cpuMatrixC, stream); cpuDenseA->copyFrom(*cpuMatrixA); cpuDenseB->copyFrom(*cpuMatrixB); cpuDenseC.copyFrom(cpuMatrixC); hl_stream_synchronize(stream); /*matrix mul*/ BufferArgs cpuInputs; BufferArgs cpuOutputs; cpuInputs.addArg(*cpuMatrixA); cpuInputs.addArg(*cpuMatrixB); cpuOutputs.addArg(cpuMatrixC, ADD_TO); cpuFunc->calc(cpuInputs, cpuOutputs); BufferArgs gpuInputs; BufferArgs gpuOutputs; gpuInputs.addArg(*gpuMatrixA); gpuInputs.addArg(*gpuMatrixB); gpuOutputs.addArg(gpuMatrixC, ADD_TO); gpuFunc->calc(gpuInputs, gpuOutputs); BufferArgs denseInputs; BufferArgs denseOutputs; denseInputs.addArg(*cpuDenseA); denseInputs.addArg(*cpuDenseB); denseOutputs.addArg(cpuDenseC, ADD_TO); cpuFunc->calc(denseInputs, denseOutputs); gpuMatrixC_d2h.copyFrom(gpuMatrixC, stream); hl_stream_synchronize(stream); /*check result*/ checkSMatrixEqual(cpuMatrixC, gpuMatrixC_d2h); checkSMatrixEqual2Dense(cpuMatrixC, cpuDenseC); } TEST(Matrix, SparseDDMul) { LOG(INFO) << "test for sparse = dense * dense matrix"; for (const auto dimM : {10, 100, 1000}) { for (const auto dimN : {10, 100}) { for (const auto dimK : {3, 10}) { for (const auto nnz : {3, 10}) { for (const auto FORMAT : {SPARSE_CSC, SPARSE_CSR}) { VLOG(3) << setiosflags(std::ios::left) << std::setfill(' ') << " dimM=" << std::setw(5) << dimM << " dimN=" << std::setw(5) << dimN << " dimK=" << std::setw(5) << dimK << " nnz=" << std::setw(5) << nnz << " format=" << std::setw(5) << FORMAT; testSparseDDMatrix(dimM, dimN, dimK, nnz, FORMAT); } } } } } }