/* Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. Licensed under the Apache License, Version 2.0 (the "License"); you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 Unless required by applicable law or agreed to in writing, software distributed under the License is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions and limitations under the License. */ #include "paddle/fluid/operators/mean_op.h" #include "paddle/fluid/platform/float16.h" #include "paddle/fluid/operators/npu_op_runner.h" namespace paddle { namespace operators { template class MeanNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& ctx) const override { auto* x = ctx.Input("X"); auto* out = ctx.Output("Out"); auto reduce_ndim = x->dims().size(); std::vector axes; for (auto i = 0; i < reduce_ndim; ++i) { axes.push_back(i); } framework::NPUAttributeMap attr_input = { {"keep_dims", false}, {"axes", axes}}; std::vector out_dims; out_dims.push_back(1); out->Resize(framework::make_ddim(out_dims)); out->mutable_data(ctx.GetPlace()); Tensor reduced_out(x->type()); std::vector reduced_dout_dims; reduced_dout_dims.push_back(1); reduced_out.Resize(framework::make_ddim(reduced_dout_dims)); reduced_out.mutable_data(ctx.GetPlace()); auto runner = NpuOpRunner("ReduceMeanD", {*x}, {*out}, attr_input); auto stream = ctx.template device_context< paddle::platform::NPUDeviceContext>() .stream(); runner.Run(stream); } }; template class MeanGradNPUKernel : public framework::OpKernel { public: void Compute(const framework::ExecutionContext& context) const override { auto stream = context.template device_context< paddle::platform::NPUDeviceContext>() .stream(); auto grad = context.Input(framework::GradVarName("Out")); PADDLE_ENFORCE_EQ(grad->numel(), 1, platform::errors::InvalidArgument( "Mean Gradient Input Tensor len should be 1. But " "received Out@Grad's elements num is %d.", grad->numel())); auto IG = context.Output(framework::GradVarName("X")); IG->mutable_data(context.GetPlace()); // ones Tensor ones(grad->type()); std::vector dout_dims; for (auto i = 0; i < IG->dims().size(); ++i) { dout_dims.push_back(IG->dims()[i]); } ones.Resize(framework::make_ddim(dout_dims)); ones.mutable_data(context.GetPlace()); auto runner_ones = NpuOpRunner("OnesLike", {*IG}, {ones}, {}); runner_ones.Run(stream); // means Tensor mean_tensor(grad->type()); mean_tensor.Resize({1}); mean_tensor.mutable_data(context.GetPlace()); std::vector mean_vec; mean_vec.push_back(1.0/static_cast(IG->numel())); framework::TensorFromVector(mean_vec, context.device_context(), &mean_tensor); // means mul ones Tensor mean_ma(grad->type()); mean_ma.Resize(framework::make_ddim(dout_dims)); mean_ma.mutable_data(context.GetPlace()); auto runner_mul_1 = NpuOpRunner("Mul", {mean_tensor, ones}, {mean_ma}, {}); runner_mul_1.Run(stream); // and mul grad auto runner_mul_2 = NpuOpRunner("Mul", {mean_ma, *grad}, {*IG}, {}); runner_mul_2.Run(stream); } }; } // namespace operators } // namespace paddle namespace ops = paddle::operators; namespace plat = paddle::platform; REGISTER_OP_NPU_KERNEL( mean, ops::MeanNPUKernel, ops::MeanNPUKernel, ops::MeanNPUKernel, ops::MeanNPUKernel) REGISTER_OP_NPU_KERNEL( mean_grad, ops::MeanGradNPUKernel, ops::MeanGradNPUKernel, ops::MeanGradNPUKernel, ops::MeanGradNPUKernel)