// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // Used for compute gpu launch parameter #pragma once #ifdef PADDLE_WITH_CUDA #include #include #include #include #include namespace paddle { namespace platform { inline int DivUp(int a, int b) { return (a + b - 1) / b; } struct GpuLaunchConfig { dim3 theory_thread_count = dim3(1, 1, 1); dim3 thread_per_block = dim3(1, 1, 1); dim3 block_per_grid = dim3(1, 1, 1); }; inline GpuLaunchConfig GetGpuLaunchConfig1D( const platform::CUDADeviceContext& context, int element_count) { PADDLE_ENFORCE_GT(element_count, 0, platform::errors::InvalidArgument( "element count should greater than 0," " but received value is %d.", element_count)); const int theory_thread_count = element_count; // Get Max threads in all SM int max_pyhsical_threads = context.GetMaxPhysicalThreadCount(); int sm = context.GetSMCount(); // Compute pyhsical threads we need, should small than max sm threads const int physical_thread_count = std::min(max_pyhsical_threads, theory_thread_count); // Need get from device const int thread_per_block = std::min(1024, context.GetMaxThreadsPerBlock()); // Suppose block count small than factor * sm, factor is a experiments value. int factor = 4; const int block_count = std::min(DivUp(physical_thread_count, thread_per_block), factor * sm); GpuLaunchConfig config; config.theory_thread_count.x = theory_thread_count; config.thread_per_block.x = thread_per_block; config.block_per_grid.x = block_count; return config; } inline GpuLaunchConfig GetGpuLaunchConfig2D( const platform::CUDADeviceContext& context, int xdim, int ydim) { PADDLE_ENFORCE_GT(xdim, 0, platform::errors::InvalidArgument( "x dim number should greater than 0," " but received value is:%d", xdim)); PADDLE_ENFORCE_GT(ydim, 0, platform::errors::InvalidArgument( "y dim number should greater than 0," " but received value is:%d", ydim)); const int kThreadsPerBlock = 256; int block_cols = std::min(xdim, kThreadsPerBlock); int block_rows = std::max(kThreadsPerBlock / block_cols, 1); int max_physical_threads = context.GetMaxPhysicalThreadCount(); const int max_blocks = std::max(max_physical_threads / kThreadsPerBlock, 1); GpuLaunchConfig config; // Noticed, block size is not align to 32, if needed do it yourself. config.theory_thread_count = dim3(xdim, ydim, 1); config.thread_per_block = dim3(block_cols, block_rows, 1); int grid_x = std::min(DivUp(xdim, block_cols), max_blocks); int grid_y = std::min(max_blocks / grid_x, std::max(ydim / block_rows, 1)); config.block_per_grid = dim3(grid_x, grid_y, 1); return config; } // TODO(wangchaochaohu): 3D will add later } // namespace platform } // namespace paddle #endif