// Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include #include #include #include #include "gtest/gtest.h" #include "paddle/fluid/framework/lod_tensor.h" #include "paddle/fluid/framework/op_registry.h" #include "paddle/fluid/framework/operator.h" #include "paddle/fluid/framework/scope.h" #include "paddle/fluid/platform/device_context.h" #include "paddle/fluid/platform/enforce.h" #include "paddle/fluid/platform/place.h" USE_OP(elementwise_add); USE_OP_DEVICE_KERNEL(elementwise_add, MKLDNN); USE_OP(relu); USE_OP_DEVICE_KERNEL(relu, MKLDNN); USE_OP(softmax); USE_OP_DEVICE_KERNEL(softmax, MKLDNN); namespace paddle { namespace operators { struct InputVars { std::string name; framework::LoDTensor *tensor; }; template bool TestMain(const platform::Place &place, const std::string &op_type, const framework::DDim &dims, const int num_inputs) { framework::Scope scope; std::vector input_names = { {"x", scope.Var("x")->GetMutable()}, {"x1", num_inputs > 1 ? scope.Var("x1")->GetMutable() : nullptr}, {"x2", num_inputs > 2 ? scope.Var("x2")->GetMutable() : nullptr}, {"x3", num_inputs > 3 ? scope.Var("x3")->GetMutable() : nullptr}, {"x4", num_inputs > 4 ? scope.Var("x4")->GetMutable() : nullptr}}; auto *y = scope.Var("y")->GetMutable(); // Initialize input data std::uniform_real_distribution dist(static_cast(10.0), static_cast(20.0)); std::mt19937 engine; size_t numel = static_cast(framework::product(dims)); for (int i = 0; i < num_inputs; ++i) { input_names[i].tensor->Resize(dims); auto data_ptr = input_names[i].tensor->mutable_data(place); for (size_t i = 0; i < numel; ++i) { data_ptr[i] = dist(engine); } } // Initialize output y->Resize(dims); auto y_ptr = y->mutable_data(place); for (size_t i = 0; i < numel; ++i) { y_ptr[i] = static_cast(0); } auto &pool = platform::DeviceContextPool::Instance(); // Out of place (reference) computation auto op_ref = num_inputs > 1 ? framework::OpRegistry::CreateOp( op_type, {{"X", {"x"}}, {"Y", {"x1"}}}, {{"Out", {"y"}}}, {{"use_mkldnn", {true}}}) : framework::OpRegistry::CreateOp( op_type, {{"X", {"x"}}}, {{"Out", {"y"}}}, {{"use_mkldnn", {true}}}); op_ref->Run(scope, place); pool.Get(place)->Wait(); // Get reference (out of place) result auto &ref_tensor = scope.FindVar("y")->Get(); // In-place (to be tested) computation auto op = num_inputs > 1 ? framework::OpRegistry::CreateOp( op_type, {{"X", {"x"}}, {"Y", {"x1"}}}, {{"Out", {"x"}}}, {{"use_mkldnn", {true}}}) : framework::OpRegistry::CreateOp( op_type, {{"X", {"x"}}}, {{"Out", {"x"}}}, {{"use_mkldnn", {true}}}); op->Run(scope, place); platform::DeviceContextPool::Instance().Get(place)->Wait(); // Get in-place result auto &out_tensor = scope.FindVar("x")->Get(); PADDLE_ENFORCE_EQ( &out_tensor, input_names[0].tensor, platform::errors::InvalidArgument( "Input and output vars should share tensor for In-place test")); // compare results auto *ref_ptr = ref_tensor.data(); auto *out_ptr = out_tensor.data(); bool is_equal = std::equal(out_ptr, out_ptr + numel, ref_ptr); return is_equal; } TEST(test_softmax_inplace, cpu_place) { framework::DDim dims({32, 64}); platform::CPUPlace p; ASSERT_TRUE(TestMain(p, "softmax", dims, 1)); } TEST(test_elementwise_add_inplace, cpu_place) { framework::DDim dims({1, 12, 20, 20}); platform::CPUPlace p; ASSERT_TRUE(TestMain(p, "elementwise_add", dims, 2)); } TEST(test_relu_inplace, cpu_place) { framework::DDim dims({1, 12, 20, 20}); platform::CPUPlace p; ASSERT_TRUE(TestMain(p, "relu", dims, 1)); } } // namespace operators } // namespace paddle