// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "paddle/phi/kernels/roll_grad_kernel.h" #include "paddle/fluid/framework/tensor_util.h" #include "paddle/phi/core/kernel_registry.h" #include "paddle/phi/kernels/cpu/roll_kernel_impl.h" namespace phi { template void RollGradKernel(const Context& dev_ctx, const DenseTensor& x, const DenseTensor& out_grad, const ScalarArray& shifts, const std::vector& axis, DenseTensor* x_grad) { std::vector out_vec; paddle::framework::TensorToVector(out_grad, dev_ctx, &out_vec); auto shifts_data = shifts.GetData(); size_t nums = shifts_data.size(); DDim input_dim = out_grad.dims(); auto dims = axis; // axis = none, reshape to 1-D tensor if (dims.size() == 0) { dims.push_back(0l); input_dim = phi::Dim<1>(out_vec.size()); } for (size_t i = 0; i < nums; i++) { ShiftAlongDim(out_vec.data(), input_dim, dims[i], 0 - shifts_data[i]); } dev_ctx.template Alloc(x_grad); paddle::framework::TensorFromVector(out_vec, dev_ctx, x_grad); x_grad->Resize(out_grad.dims()); } } // namespace phi PD_REGISTER_KERNEL(roll_grad, CPU, ALL_LAYOUT, phi::RollGradKernel, float, double, int, int64_t, phi::dtype::complex, phi::dtype::complex) {}