# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. import numpy as np import unittest import paddle.fluid as fluid from op_test import OpTest class TestStackOpBase(OpTest): def initDefaultParameters(self): self.num_inputs = 4 self.input_dim = (5, 6, 7) self.axis = 0 self.dtype = 'float64' def initParameters(self): pass def get_x_names(self): x_names = [] for i in range(self.num_inputs): x_names.append('x{}'.format(i)) return x_names def setUp(self): self.initDefaultParameters() self.initParameters() self.op_type = 'stack' self.x = [] for i in range(self.num_inputs): self.x.append( np.random.random(size=self.input_dim).astype(self.dtype)) tmp = [] x_names = self.get_x_names() for i in range(self.num_inputs): tmp.append((x_names[i], self.x[i])) self.inputs = {'X': tmp} self.outputs = {'Y': np.stack(self.x, axis=self.axis)} self.attrs = {'axis': self.axis} def test_check_output(self): self.check_output() def test_check_grad(self): self.check_grad(self.get_x_names(), 'Y') class TestStackOp1(TestStackOpBase): def initParameters(self): self.num_inputs = 16 class TestStackOp2(TestStackOpBase): def initParameters(self): self.num_inputs = 20 class TestStackOp3(TestStackOpBase): def initParameters(self): self.axis = -1 class TestStackOp4(TestStackOpBase): def initParameters(self): self.axis = -4 class TestStackOp5(TestStackOpBase): def initParameters(self): self.axis = 1 class TestStackOp6(TestStackOpBase): def initParameters(self): self.axis = 3 class TestStackAPIWithLoDTensorArray(unittest.TestCase): """ Test stack api when the input(x) is a LoDTensorArray. """ def setUp(self): self.axis = 1 self.iter_num = 3 self.input_shape = [2, 3] self.x = np.random.random(self.input_shape).astype("float32") self.place = fluid.CUDAPlace(0) \ if fluid.is_compiled_with_cuda() else fluid.CPUPlace() self.set_program() def set_program(self): self.program = fluid.Program() with fluid.program_guard(self.program): input = fluid.layers.assign(self.x) tensor_array = fluid.layers.create_array(dtype='float32') zero = fluid.layers.fill_constant(shape=[1], value=0, dtype="int64") for i in range(self.iter_num): fluid.layers.array_write(input, zero + i, tensor_array) self.out_var = fluid.layers.stack(tensor_array, axis=self.axis) def test_case(self): self.assertTrue(self.out_var.shape[self.axis] == -1) exe = fluid.Executor(self.place) res = exe.run(self.program, fetch_list=self.out_var) self.assertTrue( np.array_equal( res[0], np.stack( [self.x] * self.iter_num, axis=self.axis))) if __name__ == '__main__': unittest.main()