// Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #pragma once #include "mlir/Pass/Pass.h" namespace infrt { namespace trt { /* * trtOpTellerPass. * * Pick out the operators supported by tensorrt and convert it to graph. * * source func: * * func @main() -> tensor { * %a = "pd.feed"() * %c = "pd.conv2d"(%a) ... * %d = "pd.conv3d"(%c) ... * %f = "pd.conv2d"(%a) ... * "pd.fetch" %d, %f * } * * destination func: * func @main() -> tensor { * %a = "pd.feed"() * %c = "pd.graph"(%a) { * %m = "pd.conv2d"(%a)... * "pd.fetch" %m * } ... * %d = "pd.graph"(%c) { * %m = "pd.conv3d"(%c)... * "pd.fetch" %m * } ... * %f = "pd.graph"(%a) { * %m = "pd.conv2d"(%a)... * "pd.fetch" %m * } ... * "pd.fetch" %d, %f * } * TODO(winter-wang): Supplementary how to judge the operators can be supported * by tensorrt. */ class trtOpTellerPass : public ::mlir::PassWrapper { public: ::llvm::StringRef getName() const override { return "trtOpTellerPass"; } void runOnFunction() override; }; } // namespace trt } // namespace infrt